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type, exposure, inclination of coastal slopes, availability of sediments and so on must  also 

be considered. If such conditions are similar in areas that have differing geomorphology 

and deposits, then the possible interpretations for these differences are restricted. If the 

most extreme coastal deposits in Scotland and Ireland are believed to have resulted from 

storms, western Ireland and Scotland represent the most extreme storm-wave impacted 

coastlines around the world, because similar deposits are unknown elsewhere.   In 

addition, storms in these areas would then represent more energy than do nearly all known 

modern and ancient tsunamis worldwide. The existence of enough strong evidence for 

these conclusions (as argued by Williams & Hall, 2004; Hall et al., 2006; 2008; Hansom 

& Hall, 2009), would undoubtedly have significant consequences for our knowledge of 

coastal geomorphology. Interestingly, these authors give several hints that large cliff-top 

megaclasts are different from normal storm deposits in several respects, stating that older 

ridges ―represent the results of older and more extreme events formed in more distal 

locations when the cliff edge was further seaward than the present day‖ (Williams & Hall, 

2004, p. 105–106). This would indicate that in spite of rising storm energy, deeper water 

at the cliff foot, and ongoing coastal erosion, the geomorphologic effects  of modern or 

historical storms are significantly surpassed by those from older events. Because physical 

restrictions limit wave heights, wind speed and storm energy, it is surprising that tsunamis 

have never been taken into consideration. Hall et al. (2006, p. 132) state that the 

―angularity, lack of sorting and large size of the boulders . . . are not features commonly 

associated with modern storm beaches.‖  They also found that during the extreme storms 

in the Shetland Islands in 1992 and 1993, only small boulders were moved in the direction 

of the seaward ridge fronts, and that formerly the storms must have been much stronger 

than in modern times. What can be discounted now are storm surges and extremely high 
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spring tides during dislocation, because Shaw and Carter (1994) state that no storm surge 

higher than 1 m may occur within 1000 years. 

 

Evidence presented in this article does not support the argument that the most remarkable 

deposits along the exposed coastlines of western Ireland and Scotland can be explained by 

storms alone, in particular by storms from modern times or the past several centuries. 

Older boulder ridges several metres or tens of metres landward of frontal ones have never 

been affected by waves, although they are indisputably older than the front ridges by 

>2000 years (Table 5.2). Under conditions of ongoing significant cliff retreat and strong 

storm impacts, it should be expected that the frontal (i.e. most seaward) ridges have been 

shifted to landward and have incorporated the material of the older deposits. Hall et al. 

(2006) and Hansom and Hall (2007) regard plastic artefacts in the ridges as indicators of 

recent events, but these also could have been entrained by wave pressure in gaps of an 

existing ridge. It is difficult to understand how very high waves with extreme power could 

dislocate large boulders and a light inflatable buoy at the same time and to the same place 

(Hansom & Hall, 2009). Like floatable objects, mollusc hash can easily be entrained in old 

ridges by recent storm events, which do not have the required wave power to move 

boulders. Therefore, the reliability of their ages may differ from those materials found 

attached to or even in boulders, such as boring bivalves.  

 

Data from sites with very high wave energy indicate that only very few events of 

extraordinary power have taken place in these areas during the recent Holocene, that is, 

during the past several thousand years. These events may well have been combinations of 

extraordinary wave energy from extraordinary storm events so rare that they would only 

occur in a temporal distance of millennia (i.e. the ―perfect storm‖), but it is doubtful that 
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this explanation is correct for the deposits at sheltered sites. and the argument that large, 

elevated deposits are the result of storms and that these extraordinary storms are quasi-

normal features along the exposed coastlines of Ireland and Scotland is in direct contrast 

to historical and modern infrastructure at the coasts. For example, boathouses from Viking 

times are preserved at 5–6 m above MHW as in Skipi Geo at the northwest corner of 

mainland Orkney and at Voe of Dale along the southwestern coast of mainland Shetland; 

on the west coast of the Orkney Islands (Ronaldsay) near Wind Wick, at exposed sites of 

the Outer Hebrides on Lewis‘ west coast near the causeway from Harris to Eriksay and in 

the northwest of South Uist, cemeteries still in use are situated at 5 m above MHW or 

lower; and the new schoolhouse at the exposed west coast of Benbecula was constructed 

without protective works at a level of about 3 m above MHW. 

 

The singularity of the forms and deposits found on the Shetland Islands at Grind of the 

Navir or in Ireland near Annagh Head, in the outer Galway Bay, and on the Aran Islands 

(Fig. 5.12) raises serious questions about the displacement of boulders by storm events. 

No calculations of possible storm wave heights, storm wave physics, or ages of the 

deposits  and no descriptions of extraordinary storms, are sufficient to explain these 

displacements. Hansom et al. (2008), however, describe experiments showing extreme 

velocities of bore flow conditions at cliff tops, with up to 2.4 times the velocity of the 

incoming waves, and also that at several steps this kind of acceleration may repeat (see 

also Williams & Hall, 2004). Taking into account that extremely high waves (12–15 m) at 

plunging deep-water cliffs may have a maximum velocity of 8–9 m/s, an acceleration of 

2.4 or several such accelerations would produce flow conditions of far more than 100 

km/h with sufficient energy to transport even the largest boulders to extreme altitudes. The 

question, however, is whether these conditions are in harmony with natural scale 
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processes. Over decades of coastal research and observations during tropical and 

extratropical storms, we have never observed flow velocities on cliff tops higher than 9 

m/s, and EurOtop (2007) gave only 5–8 m/s for this process as a maximum. The only 

logical conclusion for the dislocation of extreme large boulders up to extreme altitudes is 

the impact of wave events with much more power than extreme storms.  

 

Another main argument for the storm hypothesis in the previous articles is that big waves 

affect only the upper section of the cliffs, from which they break the boulders to form 

cliff-top megaclast ridges, and that it is not necessary to imagine that storm waves have 

lifted large boulders far against gravity. If this is a sound explanation, it is difficult to 

explain why boulders with boring bivalves, bore holes of these bivalves, sea urchin 

erosional marks or attachments of calcareous algae and vermetids, can be found at as high 

as 30 m a.s.l. Another argument against the hypothesis that only the upper section of cliffs 

is affected is the fact that the best-developed and highest continuous ridges, with very 

large boulders in very high altitudes, can be found along perpendicular or even 

overhanging cliffs with undermining of up to 20 m at their base, such  as those along most 

of the southwest coast of Inishmore and the west coast of Inishmaan, and along the east 

coast of Galway Bay along the east coast (Figs 5.3 and 5.15). 
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Fig. 5.15a-d: Typical vertical and undermined cliffs with heights of 20 -30 m above MHW and cliff-
top megaclasts in the form of boulder ridges (examples from the south coast of Inishmore, Aran 
Islands, central west coast of Ireland 

 

Undoubtedly, arguing tsunami impacts along the coastlines of Western Europe is crucial. 

Only 20 years ago in the coastal sciences, nearly all researchers would have excluded 

tsunamis in the North Atlantic, except for the Grand Banks event of 1929 AD near 

Newfoundland  and the Lisbon event of 1755 AD, neither of which  had significant 

imprints in our research area. With the detection of the Storegga slide (Bugge et al., 1988; 

Dawson et al., 1988), the picture changed dramatically. Now tsunamis of extreme size and 

far-reaching consequences in the European Atlantic region can no longer be excluded. 

More recent research of this event, initially dated ~8000 yr BP, has shown that ~5500 yr 

BP (the Garth event, at the east coast of mainland Shetland) and ~1500 BP (the Basta Voe 

event on Yell Island; also Bondevik et al., 2005; Dawson et al., 2006) tsunamis occurred 

in the same area, leaving significant signatures in the geological record. The latest results 

are reported by Bryant and Haslett (2003; 2007), Haslett (2008) and Haslett and Bryant 

(2005; 2007a, 2007b; 2008) for the Bristol Channel area where they found deposits that 

can be explained only by a tsunami event reaching far inland, most probably in 1607 AD, 
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and from North Wales more evidence for times before the 17
th

 century has been published 

(Haslett & Bryant, 2007a, 2007b). Therefore, because of their extension into extreme 

altitudes with extremely large boulders even in sheltered positions and the lack of any 

signatures directly from neighbouring coasts such as the northern coast of Galway Bay, at 

least the Annagh Head features in County Mayo and those from the Galway Bay and the 

Aran Islands are the result of tsunami impacts. At Annagh Head, these events would have 

occurred >4000 years ago. In the Galway area, the data show more events (Table 5.2), and 

these time clusters are in general agreement with the occurrence of three to five ridges 

found at several locations. 

 

We believe that large boulders may be the best markers in the geological record. Bryant 

and Haslett (2003; 2007), Haslett (2008) and Haslett and Bryant (2007a, 2007b; 2008) 

found boulders on higher ground a considerable distance inland from the Bristol Channel 

and in North Wales. Boulders from the Storegga slide and later tsunamis (the Garth event 

and the Basta Voe event) have never been described, although these tsunamis occurred 

over very large areas, from southwestern Norway to the Shetland and Orkney Islands as 

well as along the north and east coasts of mainland Scotland. Is it possible that these 

extraordinary events, with run-up heights of >20 m (sea level was about –20 m at the time 

of the main Storegga event, 8,000 BP) did not dislocate boulders? Or is it possible that the 

undated cliff-top megaclasts on the Shetland and Orkney Islands (in eastern exposures to 

the North Sea) described by Hall et al. (2006) are, at least partly, signatures of one or 

another tsunami event in this part of the North Atlantic Ocean? Coastal scientific research 

can only partially precisely discern between storm and tsunami deposits. Modern tsunamis 

(e.g., the Sumatra-Andaman event of 2004) have shown that with regard to fine sediments, 

nearly all aspects of the deposits may be typical for either storm waves or tsunami waves 
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(see contributions in Shiki et al., 2008). Therefore, coarse deposits hold the evidence for 

reasonable discrimination and boulder deposits can be defined as tsunamigenic, if the 

following conditions (also the most significant characteristics in Scheffers et al. 2008) are 

met: 

 The size and weight of boulders are far beyond what can be moved by storm waves, 

based on modern modelling and physical calculations (Nott, 2003a; Imamura et al., 

2008) as well as direct observations of boulder movement and the expertise of coastal 

engineers (EurOTop, 2007). The threshold maybe on the order of 10–20 m³; 

 Evidence suggests that large boulders have been moved onshore along coastlines with 

very shallow water (e.g., fringing reefs), where wave heights, even during strong 

storm surges, are very limited; 

 The transport of boulders is much farther inland than inundation by extreme storm 

waves; 

 The height of deposition is far above the reach of strong storm waves and transport 

capacity by water against gravity; 

 In areas with regular strong storm impacts. large boulders can be found within old 

vegetation, soil or even peat, which exclude the possibility of storm waves for many 

centuries; 

 Dating of boulder deposits within the past 6000 years lacks any regularity in intervals 

known for extreme historical storms, that is, if these deposits are definitely rarer than 

so called thousand year storms events. 

 In addition, the lack of accumulations of large boulders along deep-water coasts in 

areas hit by category 5 cyclones as well as along very extended coastlines with winter 

storm impacts, where boulders are available for transport in large numbers, indicates 
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that that onshore dislocation of boulders of extreme size forming long and high ridges 

is not a typical indicators of storm waves. 

 

Hansom and Hall (2009) have also compared their data with indicators of greater 

storminess in the North Atlantic determined from Greenland ice cores which exhibit a 

marked rise in Na
+
  during the Little Ice Age (LIA) from about 1450 AD onward (see also 

Sommerville et al., 2003; 2007). This method, however, is not flawless. First, it is not 

clear that high Na
+
, which suggests more storms, reflects either a greater number of large 

storms or extreme wave heights, both of which are necessary to explain the boulder 

deposits found in the western British Isles (Hansom & Hall, 2009). Second,  how higher 

storminess in the west-wind drift could raise the Na
+
 in Greenland‘s ice cores, positioned 

to the west of the storms, must be explained. A relationship between high Na
+
 in 

Greenland ice cores and extremely high and large boulder deposits during LIA seems 

plausible, but similar boulder dislocations have also been dated for medieval times, the 

late Roman epoch and the Bronze Age (Table 5.2; Fig. 5.12; Sommerville et al., 2007). 

This does not support the theory of combining the ice core and boulder deposit archives 

for an explanation. If sea ice cover was more extended during LIA, fetch would have been 

reduced as well. Therefore, the combination of higher Na
+
 and more extensive sea ice 

would not enhance storminess in the eastern North Atlantic. Being aware of the 

uniqueness of cliff-top megaclasts (Hansom & Hall, 2009), we believe that the debate on 

their origin, in particular at sheltered sites with shallow water where storm waves are 

limited in height and energy, is well worth continuing. 
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5.7   Conclusions 

 

To date no evidence – such as observations or indisputable documents – exists for storm-

wave dislocation of very large boulders (> 50 t) near the shoreline or smaller boulders 

found at altitudes of  >20 m asl. Calculations of boulder transport by Nott (2003) and 

Imamura et al. (2008) clearly exclude this as well. Sedimentary evidence along the 

shorelines of western Ireland and Scotland, where an explanation of recent storm wave 

origin for extended boulder ridges on the Aran Islands, inside Galway Bay and along 

Grind of the Navir on mainland Shetland has been presented by Williams and Hall (2004), 

Hall et al. (2006; 2008) and Hansom and Hall (2009), requires reassessment. Because of 

the uniqueness of these sites with respect to the amount of coarse deposits and their 

position in both limited areas exposed to strong waves and very sheltered sites, alternative 

explanations such as tsunamis, should be considered. To define an exact source, 

submarine surveys of potential areas of slides at the shelf edge are necessary, as are 

absolute data gained from deep trenches in the most extended ridges and the relation of the 

boulder deposits to peat and soil development before and after the event. The question 

remains of whether cliff-top megaclasts on the eastern coasts of Scottish isles may be 

connected to sand layers from younger tsunamis such as the Garth or Basta Voe events. 

All of this may help to support or disprove the exclusive storm wave hypothesis.   
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Chapter 6: Boulder transport by waves: progress in 

physical modelling 

6.1  Preface 

 

This paper is a collaborative work by R. Benner, T. Browne, H. Brueckner, A. Scheffers, 

and D. Kelletat. Tony Browne contributed 30% of the concept, 30% of the research 

design, 10% of the data collection, and 50% of the data analysis and interpretation. He 

wrote 50% of the original draft and contributed all the graphics. 

 

 The paper discusses apparent inadequacies in calculations pertaining to boulder transport 

by storm and/or tsunami waves in previously published work and attempts to quantify the 

wave sizes and forces required to move boulders. 

 

 

Benner, R., Browne, T., Brueckner, H., Scheffers, A. and Kelletat, D., 2010. Boulder 

transport by waves: Progress in Physical Modelling. Annals of Geomorphology, 54 (3): 

127-146. 
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6.2  Abstract 

 

This paper presents apparent shortfalls in calculations pertaining to boulder transport by 

storm and/or tsunami waves in previously published work. These shortfalls have been 

addressed by analyzing the momentum forces required to shift single boulders from their 

pre-transport environments. Original formulae have been recalculated using a reduced 

mathematical approach in combination with simplified assumptions. Differences in 

boulder size and geometry, as well as fluid flow dynamics and differences in transport 

movement between storm and tsunami waves, have been scrutinized in an attempt to 

clarify the potential size of the waves and the magnitude of force(s) required to cause 

movement of boulders. 

 

Keywords: Tsunami waves, storm waves, boulder transport, physical modelling, 

mathematical approach  

6.3  Introduction 

 

The impact of forces generated by tsunami or storm waves that attack a single boulder can 

only be calculated with any degree of accuracy using computational fluid dynamics 

programs which are able to calculate transient flow phenomena. However, there are 

notable problems with modelling: (i) boulder geometry, (ii) complex cliff structure, and 

(iii) the manifold boundary conditions, as they are determined by the local parameters. 

Due to these difficulties there is a need for a model which uses a reduced mathematical 

approach with simplified assumptions in order to make well-founded estimations 

concerning the effective forces, energies and conditions that must be fulfilled to enable 

boulder transport. In 1997 and 2003, Jonathan Nott published such an approach. After 
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initial discussion of this approach, this paper addresses the application of the elementary 

rules of conservation of energy and momentum in order to present idealized situations in 

which maximum uplift by wave energy occurs for any given boulder. By comparison with 

empirically derived current velocities and wave heights it is possible to ascertain the cause 

of the displacement (storm or tsunami). A state-of-the-art discussion presented by 

Imamura et al. (2008) is very important as it presents a best estimate of the processes that 

occur in nature. Imamura (pers. comm. email 14 Sept. 2008) emphasizes the large variety 

of local conditions which may influence potential boulder transport. As such, observations 

are very much needed to check if the theoretical assumptions and calculations are right. 

Consideration must also be given to the fact that the maximum size of boulders moved 

onshore does not necessarily represent the maximum transport capacity of a storm wave or 

a tsunami flow, but may only be indicative of the maximum size of available clasts. 

Therefore even a field of large boulders located onshore may only give an approximation 

minimum wave or flow energy. Further, in a reefal environment, most authors refer to 

large boulders as ―coral boulders‖, which implies that they consist purely of coral texture 

and structure. ―Coral boulders‖, ranging from tens to hundreds of tons in size, however, 

are not common features, as coral colonies of the required size are extremely rare (and 

extremely old, which gives rise to the question: ―Why have they never been broken off 

and transported inland during a less energetic event?‖). A more accurate term is ―reef rock 

boulders‖, which indicates that pore spaces have been filled with cemented sand 

(calcarenite), and that the density, and therefore the resistance against wave transport, is 

much greater than that of a coral colony. 

Note: All symbols and terms used in this paper are listed in 6.8 Appendix: Register of 

mathemeatical symbols. 
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6.4  J. Nott’s approach  

6.4.1 General remarks 

By identifying three different boulder settings in the coastal environment (submerged, 

subaerial, joint bounded), Nott (2003) has made significant progress in the discussion of 

boulder movement by waves upon which improvements are based in order to be more 

representative of natural processes. For example, the energy needed to move a joint-

bounded boulder remains uncertain because its exact position before a wave hit it is 

unknown. What can be deduced in many cases, however, is the former position of a 

boulder in relation to sea-level if:  

 the boulder was submerged (boring organisms or attached bioconstructions may be 

present)  

 the boulder was derived from the infra-littoral fringe (remnants of a notch may be 

visible, e.g. Scheffers 2002, p. 107, fig. 116)  

 the boulder was derived from the supratidal zone (typical rock pools may be 

preserved, e.g. Scheffers 2002, p. 113, fig. 127 and p. 137, fig. 164).  

6.4.2  Nott’s formulas 

Nott (1997, 2003) proposes an equation for the calculation of the transport of boulders that 

were dislocated from a coral reef or a cliff by storm or tsunami wave(s). His fundamental 

theory is that a boulder can be overturned if there is a balance between the momentums to 

which it is exposed. He calculates all forces impacting the boulder and the points at which 

they work. Although neither of Nott‘s publications has figures showing the position of the 

descriptive parameters assigned to the boulders, it is evident that ― a ‖ is the axis parallel to 

the coastline and represents the length of the boulder, ― b ‖ is its width, and ― c ‖ its height. 

Nott calculates the momentums created by the forces with lever arms, referring to point 

―P‖ at the bottom edge of the side in the lee of the flow. In the following, the reworking of 
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the equations is based on the parameters described in Figure 6.1. In his 2003 paper, Nott 

writes: 

D L m rF F F F  
         (1a) 

where F  represents the momentums. DF
 and LF

 are momentums from surface forces 

( D = Drag, L = Lift), rF
(restraining force) and mF

(inertia force) (Figure 6.1).  

Therefore, it is proposed that the following equation would be more accurate:  

   0FD FL Fm FrM M M M   
       (1b) 

 

Fig. 6.1  Forces acting on a submerged boulder. Assumption: constant velocity of current. 

b (width of boulder), c (height of boulder), u (velocity of current), Fr (restraining force), Fm (inertia 
force), FD (force of drag), FL (force of lift), s (centre of boulder), P (point of overturning). 

 

As  0M  , this signifies that all left and right turning momentums are equal and we get 

an equilibrium of momentums. A small increase of flow velocity causes M to become 

different from zero, creating an unstable situation. A small increase in flow velocity may 

cause transport to occur by rolling, sliding or even saltation (cf. Imamura et al. 2008). This 

momentum approach is reasonable from the point of physics; however, it does not give 

any information as to the further transport of the boulder. For uplift or shift to occur, 

additional energy is required. Nott presents different equations for the calculation of the 



166 

wave heights necessary to overturn boulders, as well as different values for the coefficient 

of drag ( DC
) and boulder density ( sρ ). Due to some discrepancies, these equations need 

adjustment.  

 

In the 2003 paper, in equation (1) momentums and forces are added; however, this is in 

contrast to the accepted laws of physics. mF
 in Nott‘s equations (cf. Nott 2003a, equation 

4) is a force, but the lever arm is missing in the equation. According to Nott, mF
 shall 

include the acceleration of the water (ü ) around the boulder when the wave hits it. 

Therefore, 2c  represents the lever arm. There is also a discrepancy in the calculation 

of LF
: The wave hits the boulder at its front face ac  and then submerges it. The dynamic 

uplifting force LF
must be calculated with the size of the upper area ab , instead of bc . 

Therefore, the equation 

20.5 ( ) 2L LF u bc C bρ
        (2a) 

must be improved and should be replaced by 

20.5 ( ) 2L LF u ab C bρ
   (2b) 

If Nott‘s equation is accepted then the dynamic uplifting force LF
would be independent of 

the length of the boulder ― a ‖, but from physics we know that all dynamic forces will 

depend on the dimensions of the boulder. Therefore, in reality LF
 increases proportionally 

to ― a ‖, in the same way as drag force DF . A linear growth of the terms which are 

dependent on DF and mF  with boulder length ― a ‖, while LF
remained constant, leads to an 

error in the final equation for the wave heights. In the corrected equation, the terms of the 
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denominator LF
increases with boulder width ―b ‖, and DF increases with boulder height 

― c ‖. This is physically sound. Therefore, the corrected equations are as follows:  

2 2 2 2D L r mF c F b F b F c  
    (3) 

 2 20.5 2 0.5 2 2 2w D w L s w s mu C cac u C b gabcb abcC cabρ ρ ρ ρ ρ ü   
  (4)  

   2 2 2 2 2 / 2 /D L s w w m s wC u c a C u b a abcgb abcC cρ ρ ρ ü ρ ρ   
   (5) 
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     (11) 

Nott (1997, 2003) integrates two totally different physical processes in a single equation. 

One process calculates the effect of a uniform current on a completely submerged boulder, 

whilst the other process calculates the effect of the impact of a wave on a subaerially 

exposed boulder. Attempting to combine these processes leads to contradictions. In the 

case of a subaerial boulder hit by a sudden impact of a wave,
F

 and LF
 should not be 

calculated with the abovementioned equation because it does not recognize that there is no 

dynamic uplifting force LF
 and no Archimedes force AF

. Therefore, the two situations 

need to be determined separately. Further, it can be argued that it is not reasonable to 
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calculate LC
= 0.178, since every value between 0.05 and 0.2 is possible. In the equation 

for a stationary steady state current, Nott uses DC
= 1.2 or 2 or 3. This is not supported by 

observations. Cuboids with angular edges have a DC
value of between 1.0 (cube) and 2.0 

(prism) (Sigloch 2008). Since boulders in nature are mostly not square stones with 

rectangular flat sides, DC
could more accurately be assigned a range of 0.8 to 1.2. Nott 

argues for the high value with results that are determined when a wave hits the boulder. 

But at that moment it is a non-stationary flow regime. Nott (1997, 2003) differentiates 

between storm-generated waves (in the surf zone) with 
 

0.5
u gH

and tsunami-generated 

waves with 
 

0.5
2u gH

. Depending on the wave velocity ( u ), he uses these equations to 

calculate the wave height which is necessary to get the boulder into an unstable position. 

Other equations show that propagation and energy of the wave depend on wave length (L ) 

and water depth (d ) (Albring 1978; Oumeraci 2008). 

 

The following calculations are reworked versions of Nott‘s equation. They may be applied 

when a boulder is submerged deeply enough for it to remain submerged in the trough of 

the wave. It is assumed that the speed of the current is constant. Three boulder sizes given 

by Nott (1997) are used in the calculations: a very big boulder (Cow Bay, Table 1, page 

197, case 2), a cube-like boulder (Oak Beach, Table 1, page 197, case 5), and a rather flat 

boulder (Taylor Point, Table 1, page 197, case 3). 
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Scenario 1: Submerged boulder 

Water height above the boulder must be at least equivalent to the height of the boulder 

― c ‖, so that the dynamic uplifting force LF  is generated. 

3 -3 -22.7 10 kgm 1.2 0.15 1ms 1s D L mC C Cρ ü     
 

Table 6.1: Condition of movement: Heights of waves must be higher than calculated above to 
overturn the boulders. 

(1) Very big boulder 

6.6 m; 6.3m; 2.2 ma b c    

3
Mass : 247 10 kgρ  

Bl s
m abc
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G

F mg KN 
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2 2

0.5 6.3 2.2 6.3 2.7 1 /1 2.7 1 1 2.2 / 1 9.81

1.2 2.2 0.15 6.3
TSUH

         
    

(2) Cube-like boulder 

3.4m;

3.2m;

3.1m

a

b

c





  

3
91 10 kg

Bl
m  

 

893
G

F KN
 

(3) Flat boulder 

3.8 m;

3.8 m;

0.95 m

a

b

c





  

3
37 10 kg

Bl
m  

 

363
G

F KN
 

6.0 m
TSU

H 
 

24 m
storm

H 
 

For these cases, Nott had calculated:  

11.2 m
TSU

H 
 

173m
storm

H 
 

1.7m
TSU

H 
 

6.8 m
storm

H 
 

 

 
2.1m

TSU
H 

 

32 m
storm

H 
 

 
3.5m

TSU
H 

 

13.8 m
storm

H 
 

 

9.5m
TSU

H 
 

145m
storm

H 
 

 

The following is given:  

The term inert force ( mF ) has only a minor influence (5–15 %). 

If the boulder is flat (case 3), then the contribution of the uplifting force LF  is significantly 

higher.  For storm waves, where 
0.51,and ( )u gHδ   , it is calculated that wave heights 

four times greater than for a tsunami are necessary in order to create an unstable situation 

from the balance of momentums.    
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6.5  Approach based on the momentum force  

6.5.1  Calculation of momentum force and friction force 

In the following, momentum force is calculated in order to estimate vertical and horizontal 

movement from the impact of a water mass hitting the front of the boulder.  

 

Fig. 6.2:  Forces acting at a boulder during wave impact.   

FI (force of momentum), FR (force of friction), Fm (inertia force), FG (force of gravity). 

 

Scenario 2: boulder is subaerially exposed or lies in shallow water  

During the impact of a wave, water flow is not continuous, as assumed in Nott‘s approach 

(see above). Rather, waves hit the boulder repeatedly in short time periods. Between these 

strikes, during the phases of the wave troughs, the water withdraws so that the boulder is 

at least partly exposed. This means that velocity is not constant as the wave strike is 

sudden and non-stationary. For such cases, estimates can be made of the maximum 

momentum force as the wave strikes the boulder. Further, some simplified assumptions 

are made: (i) that the boulder is loosely positioned on a horizontal granular substratum; (ii) 

that the boulder is being attacked by water with uniform velocity at its front face ― ac ‖; 

(iii) that the water mass ( wm
) is being deviated by the boulder perpendicularly. At the 

moment of the wave strike, the momentum force ( IF
) can be summarized with the 

following equation: 
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2/I w wF m t acu uρ 
        (12) 

The equilibrium of forces 0F   determines if movement of the boulder occurs. If the 

momentum force is higher than the friction force ( RF
), then a boulder lying loosely on the 

substratum will be shifted. The friction force depends on the weight ( GF
): 

R GF Fμ
          (13) 

The coefficient of friction is 0.6μ   (tested with bulk materials) or 0.65 0.8μ    

(concrete over gravel) (Oumeraci 2008). 

  2 2

I w w wF m u t u A acuρρ 
 

G Bl BlF m g gabcρ 
 

6.5.2  Estimation of the movement of subaerially exposed boulders 

The velocity of a wave breaking at the coast depends on: wave type (deep or shallow 

water wave, i.e. storm or tsunami wave), friction force (which diminishes velocity in the 

shallow foreshore), friction force at the boulder as well as surface conditions, and the 

gradient of the foreshore environment. Observations and calculations from the 2004 

Indian Ocean Tsunami  and the Hokkaido-Nansei-Oki Tsunami (Prakhammintara 2007; 

Titov & Synolakis 1997) indicate a tsunami wave velocity of  between 10 ms
-1

 and 20 ms
-

1
. Measurements derived from video documentation taken at Phuket during the 2004 

Indian Ocean Tsunami indicates a velocity of only 8 ms
-1

 as the tsunami wave passed the 

coastline (Kelletat et al., 2006). According to Dally (2005), extreme velocities of very 

large waves in the open ocean of more than 70 to 80 kmh
-1

 (19.4–22.2 ms
-1

) will be 

reduced to about 35 % (6.8 –7.8 ms-1) on a slope with a gradient of 1:30. EurOtop (2007), 

a manual for coastal engineering, gives maximum values of between 5 ms
-1

 and 8 ms
-1

for 

the overtopping velocity of a large wave. With the assumption of velocities of 8 ms
-1

, 16 
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ms
-1

and 20 ms
-1

 at the impact of the wave, the following can be calculated for the 

abovementioned three boulders:  

Assumption 1: Velocity of wave attack u  8ms
-1

 and 0.65μ   

Table 6.2: Conditions for movement of boulders. It is only possible if forces of momentum are 
stronger than forces of friction. 

(1) Very big boulder 

6.6m; 6.3m; 2.2ma b c    

2423GF KN
 

0.65 2423 1575RF KN  
 

21000 6.6 2.2 8 930IF KN      

I RF F
 

No movement 

(2) Cube-like boulder 

3.4m; 3.2m; 3.1ma b c    

893GF KN
 

589RF KN
 

674IF KN
 

I RF F
 

Movement 

(3) Flat boulder 

3.8m; 3.8m; 0.95ma b c    

363GF KN
 

236RF KN
 

231IF KN
 

I RF F
 

No movement 

 

Result: With a velocity of u  8 ms
-1

 only the cube-like boulder can be moved due to its 

large front face. In reality, the momentum forces are smaller than the ones given here, 

which are calculated under idealized conditions. Due to the normally subangular shape of 

boulders, water masses are not rotated through 90°. As such, the real momentum forces 

will be smaller, probably by 30 % or more. According to observations (EurOtop 2007; 

Dally 2005; Kelletat et al. 2006), storm waves at the coast with velocities higher than 8 

ms
-1

 seldom occur; therefore, cube-like boulders weighing more than 80 t or flat boulders 

weighing more than 30 t (with the calculated density) cannot be moved by momentum 

forces caused by the impact of storm generated waves. Tsunami waves hitting the coast, 

however, may have velocities of 16 ms
-1

 to 20 ms
-1

 (Prakhammintara 2007; Titov & 

Synolakis 1997). In such cases, the momentum forces, which increase by the square of 

velocity, are much higher. When u  16 ms
-1

 or 20 ms
-1

, all three boulders are moved. 
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Assumption 2: Velocities of wave attack u  16 ms
-1

 and 20 ms
-1

; 0.65μ   

Table 6.3a: Relationship between wave velocity, forces of momentum and movement of boulders. 
High velocities and therefore high forces of momentum move even very large boulders.  

(1) Very big boulder  

6.6m; 6.3m; 2.2ma b c    

116ms 3717I Ru F KN F  
 

120ms 5808I Ru F KN F  
 

Boulder moves in both cases. 

(2) Cube-like boulder  

3.4m; 3.2m; 3.1ma b c    

2700I RF KN F 
 

4216I RF KN F 
 

Boulder moves in both cases.  

(3) Flat boulder  

3.8m; 3.8m; 0.95ma b c    

924I RF KN F 
 

1444I RF KN F 
 

Boulder moves in both cases.   

 

The acceleration of a boulder for a split second during a storm wave attack that moves it 

along a horizontal surface can be calculated with the equilibrium of forces 0F  .  

I R m Bl BlF F F m a  
         (14) 

( )Bl I R Bla F F m 
         (15) 

Table 6.3b: At the moment of wave impact high acceleration occurs (which then decreases 
quickly). 

Velocity 

 

Boulder 1 

 

Boulder 2 

 

Boulder 3 

 

116msu   23717 1575
8.67 ms

247
Bla 
 

 

22700 589
23.2ms

91Bla 
 

 

2924 236
18.6ms

37Bla 
 

 

120msu   
217.1msBla 
 

240 msBla 
 

232 msBla 
 

 

With velocities of 16 ms
-1

 and 20 ms
-1

, it is remarkable how rapidly boulders weighing 

many tons can be accelerated in a split second when struck by a wave. It is known from 

measurements that this initial momentum rapidly decreases after 0.2 s because the boulder 

starts to move with growing velocity (w ). Since the momentum force is calculated from 

the difference between the velocities of water and boulder, it decreases.  
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2( )IF A u wρ 
         (16) 

Further, there is a need to derive an equation that calculates the minimum velocity 

necessary for movement of boulders according to particular values of density, size and 

friction. Since 
 , ,ρ μ Blu f b

, and from the equilibrium of IF
and RF

results in the 

following equation: 

0.5

Bl

w

u bg
ρ

μ
ρ

   
   
             (17) 

For each value of density Blρ
, coefficient of friction (μ ) and size of the boulder it is 

possible to calculate the limit of velocity at which dislocation of boulders can begin.  

6.5.3  Estimation of the way of transport by wave impact 

Transport at a horizontal coast 

In order to calculate the maximum distance that a subaerially exposed boulder lying on a 

horizontal coast can be transported by the momentum force generated by a single wave 

attack, the equations are: 

2
20

ρ
ρ μ μ

ρ
      I R m Bl Bl Bl Bl Bl

Bl

u
F F F m a acu m g a g

b    (18) 

Due to the dependence on  tw
, the calculation should really be carried out with 

infinitesimal calculus. To avoid such difficulty, calculations may be carried out using 

finite time steps of 0.1 s each. For these steps, acceleration and velocity are calculated in 

addition to the transport distance of a boulder on a flat surface without allowances for 

special conditions of friction. This leads to the following results. 

With a velocity u  12 ms
-1

, the big boulder ( m  247 t) ceases movement after 2 s with a 

maximum horizontal transport distance of X  2.3 m. If u  16 ms
-1

, X  13 m after 3 s.  
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With a velocity u 10 ms
-1

, the flat boulder ( m  37 t) ceases movement after 1 s with 

X  1 m. If u 12 ms
-1

, after 2 s, X  4 m; if u  16 ms
-1

, X  10 m after 3 s.  

These maximum displacement results are only of academic interest, because one may 

argue that during long storms a lot of waves can move the boulders step by step. 

Moreover, completely horizontal coasts are very rare and the velocities there are much 

diminished by friction. Of interest are the results we get for coasts with inclines where the 

boulders are uplifted so that following waves cannot push them higher step by step. 

Transport over a coast with an incline 

In the case of a coast with a gradient of 10 % (α  = 5.7°), where the boulder is uplifted as 

well as transported, the maximum transport distance can be estimated, using the following 

equation:  

cos cos sin 0I R m GF F F Fα α α   
        (19)      

 
2

sinBl

Bl

u
a g

b

ρ
μ α

ρ
  

             (20) 

If velocity u  16 ms
-1

, the big boulder ( m   247 t) will be transported within 1 s to a 

distance of X  1.3 m and uplifted vertically by Y   0.13 m; within 2 s to X   3.6 m and 

Y   0.36 m; and after 3 s it stops at X   6 m and Y   0.6 m.  

It is important to understand that all of these results are only theoretically possible 

maximum values, caused by the impact of a single wave. In reality, these calculated 

distances will be much lower because the attacking mass of water will not be completely 

perpendicularly deviated as there is a three-dimensional flow around the boulder, causing 

the momentum force IF
 to be much smaller. In addition, velocity ( u ) also decreases 

during the initial few (1–2) seconds after wave attack as the water flows all around the 

boulder.  
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6.5.4   Predicting the movements of submerged boulders 

If a boulder is submerged in shallow water at a depth which is nearly equal to its height, it 

will probably be subaerially exposed during the trough phase of the wave. In situations 

like this, the conditions are comparable to the cases discussed previously. However, if the 

boulder is deeply submerged, additional problems arise. The impact of the wave will be 

less than in the previous case, resulting in the flow regime being more complex as the 

inertia of the mass of water around and behind the boulder must be overcome. Only the 

reduction of weight due to the Archimedes force and the effect on the force of friction can 

be calculated easily. Because movement is dependent on the density ( Blρ
), results change 

as follows: 

(1) Boulders with a low density of Blρ 
1.5 gcm

-3
 will be moved by significantly lower 

current velocities than in the case of subaerial exposure. 

(2) If density Blρ 
2.7 gcm

-3
, only a slightly greater dislocation can be expected. For 

example: If the big boulder ( m   247 t), with Blρ 
2.7 gcm

-3
, is submerged, then RF 

 

991 KN instead of 1575 KN. Therefore, the boulder will not be moved by a wave velocity 

of u   8 ms
-1

, but will be moved by a wave velocity of u  12 ms
-1

. 

(3) If coral density Blρ 
 1.5 gcm

-3
 is given, then RF

 is reduced to 290 KN, and the 

boulder will be moved somewhat.  

For example:  

Big boulder ( m   247 t), velocity at impact u   12 ms
-1

, ac   constant, 2.7 gcm
-3

 

(granite), 1.5 gcm
-3

 (coral):  

subaerial exposure    submerged 

density ( Blρ
)  2.7 gcm

-3
 1.5 gcm

-3
       2.7 gcm

-3
           1.5 gcm

-3
  

displacement (X ) 2.3 m  5.1 m             4.2 m   8 m 
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Submerged boulder movement is also difficult to calculate for another reason. While it is 

possible to calculate the movement of a subaerial and even of a joint-bounded boulder 

sitting horizontally (i.e. on a horizontal surface), this is not possible for a submerged 

boulder as it has to be moved from below sea level to above sea level (i.e. against gravity). 

In other words, no formerly submerged boulder now located on land could have been 

transported without a significant lift. In addition, if a submerged boulder is not subaerially 

exposed in the trough of the incoming wave or, if the boulder is situated at such a depth 

that the seaward orbital movement in the wave base impacts the boulder with forces acting 

in a seaward/downward direction, this would result in the submerged boulder being far 

more difficult to move onshore (in contrast to subaerial and joint bounded boulders). 

Estimates using the theorem of the conservation of energy:  

 E constant. The application of the theorem of the conservation of energy offers 

another possibility of estimating transport methods of boulders. Because energy cannot be 

created or destroyed but only transformed, for processes in fluid dynamics the sum of the 

different fluid energies must be calculated as follows:  

( ) ( ) ( ) ( ) constantkin etic pot ential h eight tot alE E E E   
     (21) 

After the impact of the wave against a boulder the situation around the boulder changes to 

a continuous flow: Once the boulder is submerged, velocity ( u ) becomes increasingly 

constant. This is especially the case with tsunamis, where submersion results in the 

condition of stationary flow because the water streams continuously inland for several 

minutes. Estimates can be made of the amount of kinetic energy of this mass of floating 

water. In order to simplify calculations, a constant velocity is assumed over the whole 

time period (and only the energy of that mass of water is acting at the boulder, that passes 

an area ― ac ‖.) 
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2 20.5 0.5kinE mu acutu  ρ
          (22) 

The kinetic energy is transformed into vertical energy (relevant to height) when the 

boulder is uplifted for a height H . Further, it must also counteract the energy loss due to 

friction since the boulder is transported along the beach at the same time.  

   force distanceh G w Hub Bl Bl w HubE F F H V gHρ ρ     
          (23) 

   ( )f riction R G w Bl Bl wE F X F F X V gXμ μ ρ ρ    
    (24) 

constant, kin h fE E E E   
       (25) 

30.5 ( ) ( ) ( ) 1
sin

G w Hub G w G w HubAu t F F H F F X F F H
μ

ρ μ
α

 
       

    (26) 

sin HubH

X
α 

 

 

 

30.5

1
sin

Hub

G w

acu t
H

F F

ρ

μ

α


 

  
          (27) 

Assuming a constant current lasting for 15 seconds and moving perpendicular to the coast 

with a gradient of 1:10, the displacements shown in Table 6.4 occur. 

Y 

(HHub) α 

X (transport 

along the 

gradient) 
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Table 6.4: Height of uplift and transport distance of boulders during a tsunami wave with constant 
speed, lasting 15 s, on a gradient of 1:10. 

boulder weight wave 

velocity 

u = 8 

ms
-1

 

u = 12 

ms
-1

 

u = 16 

ms
-1

 

u = 20 

ms
-1

 

u = 25 

ms
-1

 

boulder 1 

m = 247 t (H) 5 m 16 m 40 m 75 m 150 m 

 (X) 50 m 160 m 400 m 750 m 1.5 km 

boulder 2 

m = 91 t (H) 10 m 32 m 75 m 150 m 290 m 

 (X) 100 m 320 m 750 m 1.5 km 2.9 km 

boulder 3 

m = 37 t (H) 8 m 27 m 65 m 125 m 250 m 

 (X) 80 m 270 m 650 m 1.2 km 2.5 km 

 

Once again it must be mentioned that these are theoretical maximum values for a one-

dimensional flow. A three-dimensional flow around the boulders reduces the net forces 

acting upon the boulder. The same is true for the decreasing velocity ( u ). The real values 

may be assumed to be roughly half (or less) of the given maximum. However, transport 

distances are considerably different under tsunami wave conditions as compared to the 

impacts triggered by a single storm wave. 
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6.6   Another approach to calculating the energy of single waves 

and their effect on boulders  

 

Oumeraci (2008) offers another approach for calculating the energy of the wave. This 

equation calculates the energy of a wave using wave length (L ) and wave height (H ). 

20.125waveE gH Lρ
         (28) 

1: Energy per metreof wavefront kJmwaveE     

As before, wave energy is transformed into vertical energy when the boulder is uplifted, 

and used to overcome friction when the boulder is also transported.  

( ) ( )h G w h Bi w hE F F H m m gH   
 

  ( )f R G w Bl wE F X F F X m m gXμ μ    
 

sin HubH

X
α 

 

If the boulder is exposed subaerially, calculations must consider the full weight of the 

mass 
 Blm g

. If the boulder is submerged the force of reduced weight 
 redm g

 is needed, 

where: 

 red Bl wm m m
(masses always calculated per 1 m edge length) 

20.125 1
sin

red Hub red red HubgH L m gH m g s m gH
μ

ρ μ
α

 
     

     (29)     

20.125

1
sin

Hub

red

gH L
H

m g




 
 

 

ρ

μ

α         (30) 

With this equation it is possible to calculate the maximum horizontal and vertical 

displacements of boulders by wave energy for varying slope angles (α )

calculation wave heights and lengths must be known. They depend, among other factors, 
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on water depth (d ). When calculating wave velocities and wave lengths, a distinction 

must be made between deep water and shallow water conditions (technically speaking the 

ratio d L ). Deep water conditions are said to exist if 0.5d L  and shallow water 

conditions are said to exist if 0.05d L . Therefore, the transition area is 0.5 0.05L d L  . 

According to classical wave theory based on the pioneering work of Stokes, wave velocity 

and wave length can be calculated as follows (see also Albring (1978) and Eck (1988, 

1991)):  

Transition area:  

2
tanh

2

Lg d
u

L

π

π

 
  

        (31) 

2
3 3
4

0

0

2
tanh

d
L L

L

 
     
 

  

π

        (32)  

Deep water:  

0

2

gL
u 

π         (33) 

    

2

0
2

gT
L 

π    / , wave periodT L u      (34) 

Shallow water:   
u gd

         (35) 

Due to extreme wave lengths of up to 500 km, tsunami waves in the open ocean are to be 

regarded as shallow water waves. Their velocities can be calculated according to equation 

(35) (cf. Albring, 1978). For example, if the water depth is 3000 m then u  173 ms
-1

. 

Close to the coast, Nott (2003) calculates with 
 

0.5
2u gH

, apparently assuming H d .  

Calculations for a subaerially exposed boulders  

The following example uses a cube-like boulder (see Table 6.2): 

3.4m; 3.2m; 3.1ma b c   )   
391 10 kgBlm  

 

Example 1: Wave height: 3 m, water depth: 3 m, time ( t ) = 6.5 s 
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12 9.81 66 2 3
tanh tanh 105 0.28 5.37 ms

2 2 66

gL d
u

L

π π

π π
   

       
     

2

0 66m
2

gT
L  

π     

2
3 3
4

0

0

2
tanh 34.1m

d
L L

L

 
     
 

  

π

  

2 2 10.125 0.125 1000 9.81 3 34.1 376kJmwaveE gH L        ρ
 

376

893 0.65
1 1

sin 3.4 sin

wave
Hub

Bl

E
H

m
g

a

 
   
    

   

μ

α α  

Gradient of the coast 

3 0.1mvertically(Y), and X = 2malong the gradientHubHα    

10 0.3mvertically(Y), andX =1.7malong the gradientα  HubH  

Example 2: Wave height sH
= 6 m, water depth d = 6 m, time ( t ) = 9 s  

1 1 1

0 129m 67.4m u = 7.56ms 7.47ms 2975kJmcorrected waveL L u E       
 

Gradient of the coast 

3 0.8m(Y), and X =16mHubHα  
 

10 2.4m(Y), and X =14mHubHα  
 

Example 3: Data for the North Sea, after 17 hours of a storm with 46 kts winds in 66 m 

deep water.  

6m10.3m 215m 11.7s 88msH L T L   
                                    

1 118.3ms 7.4m 11790kJmcorrected waveu u E   
 

Gradient of the coast 

3 3.3m(Y), and X = 64mHubHα  
 

10 9.5m(Y), and X =50mHubHα  
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When a boulder is submerged, the values calculated are about 40% higher than those used 

for subaerially exposed boulders (but compare remarks above for the submerged 

situation). It must be emphasised that all these results are theoretical maximum values 

which will never occur in nature. These calculations have been carried out as if the total 

wave energy impacts the boulder, either directly during wave attack or as kinetic energy of 

a velocity, resulting from a transformation without any energy loss in the zone where the 

wave breaks. Reduction of flow velocity of more than 60 %, and hence energy losses 

during the breaking of the waves, are reported by Dally (2005). The impact of the waves is 

in any case strongly dependent on the bathymetry and the geometry of the beach face.  

 

The statistics of the BSH (Federal Maritime Hydrographic Agency, Germany) show that 

in the northern North Sea, wave heights sH
> 8 m hardly ever occurred between 2004 and 

2007. One example shows that after 18 hours of wind with a velocity of 40 kts and a water 

depth of 55 m, maximum values were: wave height maxsH
= 8.3 m, wave length L = 181 m, 

velocity u  16.6 ms
-1

. Near the coast with a water depth of 10 m, wave length decreased 

to L = 102 m and therefore u  9.4 ms
-1

. Without any loss, this wave energy could uplift 

the given boulder for H = 3.3 m and transport it for a maximum of 50 m at a slope with a 

gradient of α  = 3°. But since the height of the boulder is 3.1 m, presumably less than 30 % 

of the energy will impact it. Moreover, due to the three-dimensional water flow around the 

boulder and the de facto energy loss, uplift will most probably be much lower. During the 

storm surge of December 3rd, 1999, pressure sensors at the jetty of Helgoland measured a 

wave-generated pressure increase of 250 to 350 hPa (Kunz, 2008). This implies velocities 

of 8 –9 ms
-1

 and a wave length of about 100 m. At an altitude of 3 m above sea level the 

sensor showed a rise to 700 hPa 0.2 seconds after wave attack, and after another 0.2 
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seconds, a fall to 300 hPa which then remained constant for about 3 seconds. With that 

energy, the maximum uplift for the given boulder would be 2 m.  

6.7  Conclusion 

 

The study of the relationships between waves and dislocation of boulders led to the 

following assessment: 

 Calculations should differentiate between the very short impact of a storm wave and 

the subsequent flow regime with steady constant velocity.  

 In a split second, the impact of a wave triggers a huge momentum force which 

accelerates the boulders. For a subaerially exposed boulder weighing 90 t this only 

occurs if wave velocities exceed 10–12 ms
-1

.  

 Storm waves with heights of 3–6 m and, therefore, a velocity of less than 9 ms
-1

, do 

not have the necessary force to uplift a 90 t cube-like boulder lying in 3–6 m deep 

water vertically by 1 m.  

 Storm waves with heights of 10 m in deep water are extremely rare; however, they 

can theoretically uplift boulders of 90 t that are lying subaerially up to 9 m vertically 

and dislocate them inland for 50 m, or boulders of 250 t up to 0.6 m vertically and 6 m 

inland. In reality, the values are rather close to 0 m due to the energy loss by friction 

and due to the three-dimensional flow regime.  

 If the boulder is submerged and a constant flow velocity occurs over a long enough 

time period, the hydraulic forces DF and LF  can develop adding to the dislocation of 

the boulder. However, since extreme wave lengths of storm waves are usually not 

longer than 100–150 m, the wave period will typically be shorter than 10–12 s. Half 

of the time of the wave period (this is the time of forward current) is not sufficient 
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time for the development of a uniform flow velocity and hence for continuous forces 

DF  and LF  to develop.  

 As previously mentioned, the fact that the boulder is normally below sea level does 

not mean that it is completely submerged when the wave hits. This is due to the 

withdrawal of the water before the wave hits. If submergence is limited (i.e. in 

shallow water), the boulder will be moved in a subaerial context; however, if it is 

submerged in deeper water and will not be exposed by the water withdrawal in front 

of the wave, it will be positioned in the depth of the wave trough where water 

movement is directed seaward and downward because of the orbital tracks, and 

landward movement by storm waves may be impossible to achieve.  

 Cube-shaped boulders are more readily moved than other forms. 

 The energy required to uplift a boulder for 2 m is nearly the same as is required to 

transport the same boulder horizontally for 20 m. 

 Under constant conditions of friction the doubling of a slope angle against which a 

boulder will be moved needs approximately 20% extra energy 

 The friction for movements on loose pebbles or gravel is much easier to calculate than 

friction conditions on rough rocky slopes because of the many irregularities of such 

terrain 

 When comparing storm and tsunami waves, there are many differences that need to be 

taken into consideration 

 Tsunami water massed flow with nearly constant velocity towards the shore whereas 

storm waves ebb and flow 

 Tsunami waves have much greater wave lengths and velocities at the coast than storm 

waves (velocities of 16 ms
-1

, 20 ms
-1

 or even more are reported (Titov & Synolakis 

1997, Prakhammintara 2007). Thus, the energy stored in a tsunami wave is many 
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times higher than that in a storm wave, and as such, high kinetic energies can develop. 

Thus, tsunami waves are theoretically able to uplift big boulders for more than 70–

150 m and transport them for more than 3 km inland. In reality, uplift heights may 

reach about 30–70 m with transport distances exceeding 1 km. 

This study aimed to estimate – with simplified mathematical tools – the extent of vertical 

and horizontal displacements of big boulders. There is a remarkable difference between 

the potential uplift and horizontal movement for storm waves and tsunami waves. The 

results are maximum values only, mostly calculated under the assumption of a one-

dimensional stationary flow, without considering any energy loss. In reality, fluid 

processes are much more complex and as such, they can only be deciphered numerically 

by calculations with computational fluid dynamics models. In this context, the excellent 

work by Imamura et al. (2008) must be mentioned as their attempts at finding a solution is 

significantly closer to reality than anything that precedes it.  Their approach integrates 

different methods of transport, including the possibility of saltatory movements of the 

boulder, by using a variable and time-dependent coefficient of friction. 

 

6.8  Appendix: Register of mathematical symbols 

, ,D L rF F F
 only in eq (1) are momentums (as at Nott‘s paper)  

mF
 Inertia force    mC

 mass coefficient    

DF
 Drag force    

D dC C
 coefficient of drag 

LF
 Lift force    

L lC C
 coefficient of lift 

RF
 Friction force   μ coefficient of friction 

G rF F
 Force of gravity   g  gravitational constant 
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AF
 archimedic uplift force  stormH

 height of storm wave 

IF
 force of momentum or impact  TSUH

 height of Tsunami wave 

, ,a b c  3 dimensions of boulder     waveE
 energy of a wave   

BlV
 Volume of the boulder  hE

 energy of height    

Blm
 mass of the boulder   kinE

 kinetic energy 

,ρ ρBl s  density of the boulder  fE
 energy of friction 

,ρ ρw  density of water   potE
 potential energy 

wm
 mass of water   

 HubY H
 vertical transport of boulder 

u  speed of water flow   X  transport distance along the shore 

w  speed of moving boulder  α gradient of the shore 

ü  instant. flow acceleration  L  length of a wave 

αBl  acceleration of boulder  0L
 length of wave in deep water 

H  height of a wave                                     d  depth of water     

T  wave period    correctedu
 correction for transition area of water depth 

FDM
 momentum caused by drag force 

FLM
 momentum caused by lift force 

FmM
 momentum caused by inertia force 

FrM
 momentum caused by restraining force   

r GF F
 Fr = FG 
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Chapter 7:  Concluding discussion 

 

7.1  Introduction 

 

It is surprising that the knowledge and experience of coastal engineers, who are 

responsible for protection works against strong waves, and whose understanding is based 

upon centuries of practical experience, have not been utilised more by the coastal sciences. 

With regard to the dislocation of large clasts (both natural and artificial ones), much useful 

knowledge could have been used as a basis for a worldwide catalogue of the wave forces 

and flow energy of tsunamis. There is also an anomalous lack of observations of pre- and 

post-event situations regarding boulder movement by storm waves. This is despite the fact 

that many strong winter storms with high, long-period waves and surges meters tall occur 

regularly in the higher latitudes annually, with numerous tropical cyclones (hurricanes and 

typhoons) occurring in the lower latitudes. Reports on changes to the natural environment 

caused by these events are rather rare while those concerning their impact on coastal 

infrastructure are numerous. In modern times thousands of picture and video/movie 

documents have been made which provide objective presentations of the results of 

extreme wave events. This is a fantastic database, but in relation to the question of large 

boulder transport (that is boulders of 10 m³, >20 ton) this database contains very little 

information. Many educated people, geoscientists and environmentalists, are well trained 

observers of these processes but so far have not contributed to our knowledge of boulder 

transport to any significant extent. Their contribution is limited to a few articles providing 

quantitative data to the boulder transport problem – almost all without exact 



189 

measurements. However, despite this lack of data, hundreds of papers still maintain that 

the largest boulders known have been moved by storm waves alone.  

 

In contrast, observations and proofs for boulder dislocation by modern and old tsunamis 

are more numerous. Any objective assessment of the literature would conclude that even 

the strongest storms do not normally move large boulders. Unfortunately, the task forces 

established to identify the changes caused by recent strong tsunamis – consisting of 

geologists and sedimentologists – have focussed exclusively upon traditional fine-

sediment distribution and setting character. The conventional view has been that for fine 

sediments, a large range of transport methods and terms exists, and that by examining the 

character and inner structure of fine sediments, the processes involved in their transport 

and the energies released, can be detected and analysed. As the ongoing debate on the 

character and discrimination of storm and tsunami deposits has shown, this is not the case. 

General statements published since the beginning of the 1990s which claim to specify 

which characteristics of fine sediments conclusively point to particular modes of transport, 

have been shown to be erroneous (see Shiki et al., 2008). 

 

7.2  Source of boulders 

 

Large clasts or boulders have been excluded from coastal research and transport 

interpretation because they generally lack a stratigraphic context, which makes it difficult 

to judge the time of dislocation and other circumstances of their movement. Nevertheless, 

the origin of large clasts and boulders is in most cases clear. Some of them come from 

glacial drifts, rock falls, or down-slope creeping and some are remnants of former high 

reliefs. If we exclude all these, we can be reasonably sure that in nearly all remaining 
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cases they were transported inland by the sea. In particular this is the case in flat coastal 

environments and coral reef terraces, especially where the boulder material itself has 

additional indicators such as marine borings or the attachment of littoral organisms and/or 

their signatures (including calcareous algae, vermetids, tube worms, barnacles, sea urchin 

perforation and sponge borings). These indicators can in most cases be used to date the 

last transport process out of the marine or littoral environment as the death of these 

organisms brings the radiocarbon clock to stop, allowing accurate measurement.  

7.3  Problems of modelling 

 

The transport processes of fine sediments in swash, waves or tsunami flow can be tested in 

the laboratory by experiments restricted to either saltation or movement in suspension, 

which is possible with slow water movements of less than 2 metres/sec. Understanding the 

transport processes of boulders, however, is much more complicated, and requires a higher 

number of variables to be taken into account. It also is extremely difficult to construct or 

model tsunami transport because it involves long-lasting flows of high velocities. Many 

attempts have been made using small-scale models. So far, good results have been 

obtained regarding wave movements, refraction, deformation and velocity as influenced 

by bathymetry and coastal topography. Models for tsunami-approach towards an existing 

coastline, however, lack the most important basic data, which is bathymetry. Charts 

mostly show bathymetry up to the 10m-isobath, where larger ships can navigate, but they 

almost never show bathymetry closer to the shore in shallow water. Bathymetric 

conditions are critical for predicting inundation, run-up and flow velocity – parameters 

which affect natural coastal features, infrastructure and life along the coastlines.  

 



191 

For short journeys of boulder fragments it may be acceptable to use calculations with 

fixed assumptions about the basic constants affecting transport. However, as conditions 

may vary more over longer distances, all assumptions regarding parameters are certainly 

over-simplified. As with most models As with most models which involve a large number 

of variables (or which fail to consider enough variables) over-simplification leads to 

results which may differ widely from actual processes. This is certainly true for boulder 

transport modelling. In addition to these problems, wave movements can be replicated in a 

laboratory but tsunami flows cannot, as the parameters cannot be reduced to approximate 

natural conditions at these small scales. Also, whereas physical conditions of wave 

movements are rather well analysed in nature and the laboratory, those during tsunami 

flows are not widely known. This is due to a of lack of direct observations, and therefore a 

lack of experience of all possible situations. 

 

7.4  Questions of boulder size and density 

 

Besides the important question of boulder volume – which may be difficult to calculate in 

the case of a significant sculpting without three-dimensional laser scanning – the 

estimation of boulder mass needs several more steps during field work. Large boulders 

cannot be transported to the lab for automatic detection and most coastal boulders consist 

of unhomogenous rock (such as reef rock from a Pleistocene coral reef). The only way to 

calculate mass accurately is to find out the constituents of the boulder and their quantities 

as a percentage of volume. The combined density of all of these constituents may then be 

determined via Archimedean principles. Values ranging from less than 2.0 to more than 

2.5 g/cm³ are typical. Of course the question arises whether it is important to know the 

exact weight of a boulder which evidently has a volume of far more than 50 m³ and 
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therefore a weight of more than 100 tons. When found at a higher altitude (say 200 metres 

from the coastline), these figures alone exclude any transport by storm waves, whether 

density is low (1.8 g/cm³), or high (2.6 g/cm³). 

7.5  Boulder forms 

 

Even the simple form of a boulder itself presents several unsolved problems – is it a cube, 

cuboid or a plate (angular or spherical)? The three different geometrical forms alone 

dramatically influence the transport physics – even for boulders of identical volume and 

mass. Some scientists argue that a platy boulder (z-axis very short against a-axis) needs 

the highest energy to dislocate, while others claim, based on observation, that these forms 

may be lifted more easily by overflow, in a manner akin to the upward pressure on the  

wing of an aircraft. 

7.6   Transportation mode 

 

Apart from a boulder‘s form, its setting and mode of transport play a significant role. Is 

the surface rough, smooth, solid or flexible? Is the movement upwards, oblique or 

horizontal?. These factors are only significant if the boulder is pushed forward scratching 

the surface, or if it is rolling with ongoing contact with the substrate. In most models and 

calculations pre-set theoretical numbers, or numbers experimentally determined from a 

long run of experiments, are used. These figures, however, are much less important if a 

boulder is saltating, or transported above-ground in a rapidly moving swash of water. The 

latter conditions have only been considered in the last few years, although evidence exists 

of large boulders being broken into fragments by being smashed down repeatedly during 

transport. 



193 

7.7  Gaps in the knowledge about important parameters 

 

For tsunami transport and water movement models we lack other types of information that 

are important for calculating wave height, flow depth, inundation and transport energy. 

They are: near-shore sea bed bathymetry and form, sediment type, suspension load (flow 

or wave). It is apparent that much more information is needed to precisely calculate what 

happens within a tsunami flow and during boulder transport by a tsunami. 

7.8  The need for integrative solutions 

 

It may be possible to overcome the above problems by adopting a large-scale concerted 

multidisciplinary approach Ideally, modellers and physicists as well as field geographers 

and geologist should work together and contribute their exact observations, measurements 

and facts. This would improve calculations, and the formulation of theoretical 

explanations and solutions to problems. Of equal importance is the need for ―pure‖ 

scientists to take into account the practical experience and modelling results of coastal 

engineers, based on hundreds of years of expertise all over the world and in every natural 

setting.  Unfortunately this has not been the case so far. 

 

Schools which favour different methods compete with each other rather than work 

together. Inductive conclusions following objective field data are regarded as being of 

minor importance compared to so-called exact physics and mathematics and the models 

based on them.  Too often, the result is that important field observations are neglected for 

many years before they are taken into consideration in the development of theoretical 

analyses. To ameliorate this problem, field workers like Anja Scheffers have introduced a 

new series of ―International Tsunami Field Symposia‖. These were begun in 2006 on 
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Bonaire in the Caribbean), and continued in 2008 in southern Italy and western Greece. 

Symposia will be held in Japan in 2010 and in Hawaii in 2012. These meetings of 

scientists working with different methods and in different settings (field, computer, and 

laboratory) bring all ―schools‖ and methodologies into contact with each other to discuss 

all relevant problems. Additionally, historical accounts of displacement events can help 

clarify what caused large boulders to be displaced can help to clarify what happened when 

large boulders were displaced. We make further progress in this direction by using not 

only scientific reports but also old myths and legends about extreme events on coastlines 

around the world. In some cases an interpretation (as to whether the accounts were of 

storms or tsunamis) has been possible or plausible, and in some cases it has been possible 

to deduce dates for singular events which occurred thousands of years ago. 

7.9  New interpretations of old data 

 

The above outline may sound rather pessimistic regarding the likely time frame for finding 

solutions to the main problems of boulder transport by forces from the ocean. However 

there is hope if one accepts that traces of tsunamis from former times may be detected in 

sediments. An example is the discovery in 1987 of the Storegga Slide in the North Sea 

between Norway and Scotland. The Storegga Slide triggered an enormous tsunami about 

8000 years ago. Another example is that since the year 2000 a growing number of sites are 

being discovered worldwide with large and therefore possibly tsunamigenic boulders 

onshore. As a result more scientists are looking to their old data and sediment archives to 

test for a tsunamigenic origin. Geo-archaeologists now include tsunamis in their 

reconstructions of former coastal environments as another possible explanation landscape 

transformation. Every year new sites with palaeo-tsunami evidence are found. The 2004 

Indian Ocean tsunami catastrophe with over 225,000 fatalities certainly triggered an 
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interest in tsunami research in general and coastal risk analysis in particular. This has 

improved the chances of financing tsunami research and has increased the opportunities 

for international collaboration and exchange of data. Since the 2004 event, old sites about 

which researchers have had disputed interpretations have been investigated again with at 

least 50 new sites of palaeo-tsunamis detected worldwide. 

7.10  Desiderata for future research on the boulder transport 

problem 

 

The overall aim when studying sediment transport at the shoreline must be to find the 

threshold and capability of storm waves to transport boulders of certain sizes. In some 

cases it will not be clear whether boulders were transported by storm waves or tsunamis, 

although my wish is that elaboration of approximate figures of boulder size for practical 

use in field geology and geomorphology may be developed. Future research on tsunami or 

palaeo-tsunami deposits should incorporate all sizes of sediments (including boulders). 

Task forces which aim to inspect modern tsunami sites should also use the boulders 

transported to draw conclusions about wave energy (flow depth, flow velocity, suspension 

load etc.). Engineers may help to identify the energy necessary to destroy artificial 

structures at different altitudes and distances from the shoreline. Only by using an 

approach which draws on multiple sources of information will we be better able to answer 

the open questions of tsunami and palaeo-tsunami research – including a more precise risk 

calculation for onshore structures and a more secure base for protection measures. As a 

final statement I would like to express my conviction that the problems of boulder 

transport by storm waves or tsunami flow in nature have not been finally resolved – only 

that significant steps have been achieved to combine physics and mathematics to closer 

model the natural conditions. 
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