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ABSTRACT 

 
The existing significant point generation techniques such as convex hull are unable to find the proper 

significant points for irregular shaped objects. To address this issue, an algorithm namely finding significant 
points for parametric curve generation techniques (FSPP) has been proposed in this paper that is able to find 
out proper significant points which will further be used to produce required shape descriptor using 
parametric curve generation techniques. Experimental results confirm the superior performance of FSPP 
algorithm over convex hull in approximating significant points for all types of both regular and irregular 
shaped objects.  

 
Keywords: Shape descriptor, convex hull, Bezier curve, significant points, pattern recognition, and image 
processing. 
 
1. INTRODUCTION 

Image processing is the most important field in 
computer vision, image understanding, and coding 
[1-3]. In a wide variety of image processing and 
pattern recognition applications such as shape 
descriptor for characters and objects, surface 
mapping through to active lip shape modelling, and 
face recognition [4-9], parametric curve generation 
techniques i.e. Bezier curve (BC) [10-14] are  used 
to generate shape descriptors (shape contour points) 
for a given set of significant point (SP). These SPs 
can be either given manually or generated 
automatically for the respective shape. For the 
automatic generation of SPs for the curve 
generation techniques [10-11] convex hull [15-18] 
is used. However, the problem is that convex hull 
generates SPs in such a way that it is unable to find 
concave curves properly. As a consequence, if BC 
is applied on these generated SPs, it generates a 
distorted shape or contours. To address this issue, 
this paper presents an algorithm, called finding 
significant points for parametric curve generation 
techniques (FSPP), which automatically generates 
the SPs effectively even though the shape is either 
convex or concave i.e. for all types of shapes. The 
FSPP algorithm finds SP based on the perpendicular 
distance of a shape point from the line passing 

through two respective SPs. A perceptual threshold 

( )maxT  is used to identify the SP. If a parametric 
curve generation technique such as BC is used to 
generate shape contour points using SPs generated 
by FSPP, it always provide better curve 
representation than that of generated by convex 
hull.  

 
This paper is organized as follows: Section 2 

describes the mathematical modelling of Bezier 
curve while Section 3 details the basic idea of 
convex hull. The FSPP algorithm together with its 
constituent three algorithms is presented in Section 
4 with the experimental results in Section 5. Finally, 
some conclusions are provided in Section 6. 

 
2. BEZIER CURVE 

The theory of Bezier curve (BC) is provided in 
[10-14]. The BC generates contour points 
considering global shape information, with the 
curve always passing through the first and last SPs. 
The degree of the Bezier polynomial depends on the 
number of SPs, from which a blending function is 
used to produce the position vector ( )P t . If there 

are 1L +  SPs, the position is defined as 
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( )kkk yxP ,: , Lk ≤≤0  considering 2-D 
shapes. These coordinate points are then blended to 
form ( )P t , which describes the path of Bezier 

polynomial function between 0P  and LP :  

      ( ) ( ),
0

L

k k L
k

P t P BEZ t
=

= ∑        (1) 

Where the Bezier blending function ( ),k LBEZ t  
is known as the Bernstein polynomial, which is 
defined as:  

                                    

( ) ( ), 1 L kk
k L

L
BEZ t t t

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

     (2)                                                             

The recursive formula used to determine coordinate 
positions is:  

                       
( ) ( ) ( ) ( ), , 1 1, 11k L k L k LBEZ t t BEZ t t BEZ t− − −= − +                                   

(3) 

Where, ( ),
k

k kBEZ t t=  and     

( ) ( )0, 1 k
kBEZ t t= − . 

 
The individual BC coordinates are represented 

by the following pair of parametric equations:  

                                            

( ),
0

( )
L

k k L
k

x t x BEZ t
=

= ∑                             (4) 

                                           

( ),
0

( )
L

k k L
k

y t y BEZ t
=

= ∑      (5) 

An example of a BC is provided in Figure 1 with 4 
SPs [13]. 

 
Fig. 1 Curve generated by Bezier Curve 

 

However, since BC considers all the SPs to 

generate the curve points and hence unable to 
produce complex curves correctly and smoothly. To 
represent complex curves higher degree Bezier 
curves (BCs) can be used. But higher degree BCs 
suffer from the problem of computational 
complexity and undulation and can produce 
unwanted oscillations [10, 11]. To avoid these 
problems, alternatively, composite Bezier curve 
(CBC) [10-14] is used to produce the desired level 
of curves and which was also used in the 
experiments for the proposed FSPP algorithm. CBC 
uses the technique of joining several lower degree 
BC segments together to approximate a shape. 
Joining smaller segments also gives better control 
over the shape of the curve in smaller regions. To 
ensure the smoothness of the curve, continuity of 
the BC segments should be maintained. 
 

For a given set of SPs from the original shape, 
a CBC can be formed by subdividing the SPs to 
smaller sets of SPs each of which can be used to 
produce lower degree Bezier segments and then can 
be joined together according to the continuity 
constraints. Mathematically, for n  given SPs, m  
sets of SPs can be produced each having )/( mn  
SPs which can produce a CBC joining m  BC 
segments.  A suitable example of a CBC is 
presented in Figure 2 [14] joining two BC 
segments. 
3. CONVEX HULL  

Computing a convex hull [15-18] is one of the 
first sophisticated geometry algorithms. It works 
based on determining the smallest convex set 
containing a discrete set of points. Convex set (C ) 
of a set of points S  is the set such that for all x  
and y  in C  and t in interval {0, 1} the point at 
position (1 )t x ty− +  is in C . Thus, each point on 
the line segment joining x  and y  resides within 

Fig. 1: Curve generated by composite Bezier curve 
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C  which implies that convex set is connected. The 
convex hull of an object is the minimal convex set 
containing that object. The convex hull of a set of 
points S  in n  dimensions is the intersection of all 
convex sets containing S . The convex hull can be 
described as the convex combination of the points 
in S . For N  points Nppp ,,, 21 K  in S , the 
convex hull  is given by the following expression: 

                               

⎭
⎬
⎫

⎩
⎨
⎧

=≥≡ ∑∑
==

10:
11

N

i
ii

N

i
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(6) 
Where, CH  denotes convex hull.    If all the points 
are not on the same line then convex hull is a 
polygon. In case of collinear points the convex hull 
is a straight line. A suitable example of convex hull 
from [17] is shown in Figure 3 where it is clearly 
visible that all the data points are surrounded by a 
minimum number of points each of which is treated 
as a SP. 

 
Fig. 2: Convex hull representation 

 
There exists several methods for computing 

convex hull of which Graham scan, Jarvis march, 
Divide & conquer, and Quickhull are the most 
popular ones [18-21]. The properties of all the 
convex hull algorithms restrict them to only convex 
objects. They can not be used to produce SPs for a 
concave object limiting their capability in terms of 
describing boundary of any object. To resolve this 
problem an algorithm for generating proper SPs for 
the curve generation techniques is presented in the 
following section.   

 
4. THE MODELLING OF FSPP ALGORITHM 

This section formally presents an algorithm to 
generate SPs for curve generation techniques like 
Bezier curve (BC) namely finding significant points 
for parametric curve generation techniques (FSPP) 
together with its three constituent algorithms called 
rearrange boundary points (Algorithm 1), generate 

significant points (Algorithm 2) and interpolate 
significant points (Algorithm 3). The first 
constituent algorithm of the proposed FSPP 
algorithm is detailed in the following section. 

 
4.1  Rearranging Boundary Points 

Since the boundary points scanned from an 
object may not be arranged in a sequential manner 
and in this case, it is mandatory to rearrange the 
boundary points in either clockwise or anti-
clockwise to generate SPs using FSPP, an algorithm 
is presented in this section to rearrange the 
boundary points. To rearrange the boundary points, 
a point is taken arbitrarily as the first point (Step 1 
of Algorithm 1) and considered as the current point 
(Step 2). It needs to find the Euclidian distances of 
all points from the current point (Step 3) to 
determine the next point by applying the concept of 
both absolute and relative chain codes [22, 23]. To 
select the next point, firstly the direction of the 
previous point is considered as shown in Figure 4. 
If a point with unit distance is found in the same 
direction of the previous point that will be treated as 
the next point regardless of the directional sequence 
presented in Figure 4. But, if there is no point 
which has the similar direction as the previous 
point, then the next point will be selected based on 
the sequence of the directions i.e. if a point in 
sequence 1 is found it will be selected as the next 
point, if not and a point in sequence 2 is found then 
it will be selected and so on. 

 
Fig. 4 Directional sequence  

 
For scanning reasons, there may not be found 

any point with unique distance due to missing 
boundary points at the time of scanning. In this case 
the closest point from the current point at minimum 
distance will be the next point. Afterwards, the 
current point is stored in a sequential manner along 
with the previously stored points and the next point 
is considered as the current point (Step 5). This 
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process is repeated until a closed boundary is found 
(Step 6). But if the distance of the first point from 
the current point ( fD ) is smaller or equal to that of 

the closest point from the current point ( minD ) 
i.e. minfD D≤ , then the start or the first point will be 
taken as the current point and the process is closed 
as the closed boundary is received. 
 
Algorithm 1: Rearrange boundary points. 
Precondition: Boundary Points.  
Post condition: Arranged Boundary points in B . 
1) Choose a boundary point arbitrarily as the first 

point FP .   

2) Current point CP  = FP  . 
3) Calculate the distances of all boundary points 

from CP . 

4) Find the next point NP  as mentioned in Section 
4.1. 

5) Store CP  and CP  = NP . 
6) Repeat step 3 to 5 until a closed boundary is 

reached. 

4.2 Generating Significant Points 

The significant point generation technique is 
detailed in Algorithm 2. After rearranging the 
boundary points using Algorithm 1, SPs are 
generated. To begin the process any one of the 
boundary points is chosen as the first SP shown in 
Step 2. The distances of all the boundary points 
from the first SP are calculated (Step 3) and the 
boundary point with the largest distance is treated as 
the second SP (Step 4). All the boundary points 
between any two consecutive significant points are 
extracted and then the perpendicular distances of all 
of these boundary points from the line passing 
through these two corresponding SPs are calculated 
in Step 5(a) and then the maximum distance 
( )max_dist  is obtained (Step 5(b)). If 

( )maxmax_dist T> , then the respective boundary 
point will be another SP (Step 5(c)). This process is 
applicable for all consecutive pair of SPs. For the 
next process, the SPs are rearranged and the Flag is 
set to TRUE. If there is no boundary point found 
left for which ( )maxmax_dist T>  is true, the 
process will stop (Step 5 (d)). 

 

Algorithm 2: Generate significant points. 
Precondition: Arranged set of boundary points and 

maxT .  

Post condition: Generated Significant Points C . 
1) Flag=TRUE. 
2) Choose one point randomly which is the first 

SP. 
3) Calculate distances of the first SP with all 

shape points. 
4) The point with the largest distance will be the 

second SP. 
5) DO WHILE (Flag), 

a) Calculate perpendicular distances of the 
shape points which lie between two 
consecutive SPs from the line passing 
through these two corresponding SPs. 

b) Find maximum distance max_dist  

c) IF ( )maxmax_dist T>  THEN  
i) The corresponding shape point will be 

another SP. 
ii) Do this for every consecutive pair of 

SPs. 
iii) Rearrange SPs in the similar way of 

boundary points.  
iv) Flag=TRUE. 

d) ELSE 
        IF For every consecutive pair of SPs 
( )maxmax_dist T≤  THEN 
             Flag=FALSE. 

e) END IF 
6) END DO WHILE 

If there is any long straight line boundary, this 
algorithm will produce SPs with large gap within 
that line and hence CBC will be unable to generate 
the expected contour points. To address this issue, it 
needs to interpolate some new SPs when there is a 
large gap between two SPs and an algorithm for this 
purpose is described in the following section.  

4.3 Interpolating Significant Points 

This section presents an algorithm to 
interpolate new SPs between a pair of SPs having 
large gap which is detailed in Algorithm 3. After 
generating SPs using Algorithm 2, the distances 
( )1, +∆ ii  between every consecutive pair of SPs are 
calculated (Step 1 of Algorithm 3). To generate a 
smooth curve, it needs to find out the SPs 
approximately after the same gap as CBC generates 
curve points based on the SPs. For this reason, the 
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average distance ( )avg∆  of 1, +∆ ii  where 

1 i n≤ ≤ and n  is the number of SPs, is used as a 
measurement to insert additional SP (Step 2) where:  

∑
=

+∆=∆
n

i
iiavg n 1

1,
1

                  (7) 

If ( )avgii ∆>∆ +1, , then a boundary point having 

avg∆ distance from thi  SP is considered as another 
SP (Step 3). This process will continue till 
( )avgii ∆>∆ +1,  is true for any pair of consecutive 
SPs (Step 4).  

 
Algorithm 3: Interpolate significant point. 
Precondition: Significant Points of an object.  
Post condition: Final Interpolated Significant 
Points C . 
1) Calculate the distance ( )1, +∆ ii  between every 

consecutive pair of SPs. 
2) Calculate the average distance ( )avg∆  of 

distances ( )1, +∆ ii . 

3) FOR all i , IF ( )avgii ∆>∆ +1,  THEN consider 

a boundary point as SP that is  avg∆  distance 

apart from the thi SP. 
4) REPEAT Step 3 Until for all i , 

avgii ∆≤∆ +1, . 

Based on the above mentioned three constituent 
algorithms, the formal FSPP algorithm is detailed in 
the following section.  

4.4 The FSPP Algorithm 

The FSPP algorithm is detailed in Algorithm 4. 
The boundary points are arranged in a sequence 
using Algorithm 1 (Step 1). Then, the SPs are 
generated using Algorithm 2 (Step 2) from the 
rearranged boundary points of the corresponding 
object. As mentioned in Section 4.2, CBC is unable 
to generate a smooth curve if there is large gap 
between two consecutive SPs which motivated to 
find some new SPs applying Algorithm 3 (Step 3). 
Finally, the CBC is used to generate a proper shape 
descriptor to prove the superiority of the FSPP 
algorithm (Step 4).   

 

Algorithm 4: Finding significant points for 
parametric curve generation techniques (FSPP). 
Precondition: Boundary points of an object.  
Post condition: Final Significant Points C . 
1. Arrange the boundary points using Algorithm 

1.  
2. Generate SPs using Algorithm 2. 
3. Interpolate new SPs using Algorithm 3. 
4. Apply CBC with generated SPs to approximate 

the shape contour. 
 
5. EXPERIMENTAL RESULTS 

To assess the performance of the proposed 
FSPP algorithm, all the related algorithms are 
implemented using Matlab 6.1. The experiments 
have been conducted using different images having 
different shapes and orientation. The generated 
contour produced by CBC for SPs produced by 
convex hull is compared with that for SPs produced 
by FSPP. To represent foreground objects, the 
background of images are manually removed by 
setting it zero. Any zero valued foreground pixels 
are replaced by one which does not impact upon the 
visual perception. For better visual representation, 
the generated significant points and the contour 
points are represented using different colours and 
symbols such as ‘□’ and ‘-’ respectively. The SPs 
generated by convex hull is represented by magenta 
‘□’ and the corresponding curve points produced by 
CBC is represented by  green ‘-’ while these for 
FSPP are represented by cyan ‘□’ and red ‘-’ with 
different colour rather than their original gray-scale 
pixel intensities.  The value of perceptual threshold 

maxT  is set to 1 in all experiments. 

 
(a) Original image 

 
(b) Reference shape 
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(c) Significant points by convex hull  

 
(d) Generated curve by CBC 

 
(e) Significant points by FSPP 

 
(f) Generated curve by CBC 

Fig. 5 (a) Original bird image, (b) Reference shape, (c) 
Significant points  by convex hull, (d) Generated curve 
by convex hull, (e) Significant points by FSPP and (f) 

Generated curve by CBC. 

The first set of experimental results relates to 
the Figure 5(a) image having a bird object with 
arbitrary shape. The reference shape or boundary 
points which are achieved by scanning the boundary 
is shown in Figure 5(b). The SPs generated by 
convex hull and the generated contour produced by 
CBC are given in Figure 5(c) and Figure 5(d) 
respectively. Similarly, the SPs generated by the 
proposed FSPP algorithm and the corresponding 
contour points generated by CBC are shown in 
Figure 5(e) and Figure 5(f) respectively. It is clear 
from Figures 5(c)-(d) that convex hull generated 

ineffective SPs for this arbitrary shaped object and 
hence CBC produced an erroneous shape with 
losing its originality. In contrast, the FSPP 
generated the sufficient number of correct SPs 
shown in Figure 5(e) and hence CBC produced 
approximately similar contour in comparison with 
the reference boundary in (Figure 5(b)). It proves 
the superior performance of FSPP algorithm over 
convex hull. 

 
(a) Original image 

 
(b) Reference shape 

 
(c) Significant points by convex hull 

 
(d) Generated curve by CBC 

 

(e) Significant points by FSPP 
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(f) Generated curve by CBC 

Fig. 6: (a) Original cat image, (b) Reference shape, (c) 
Significant points by convex hull, (d) Generated curve 

by CBC, (e) Significant points by FSPP and (f) 
Generated curve by CBC. 

Another sample image analyzed was a cat 
image which has arbitrary shape in Figure 6(a) with 
its corresponding reference boundary points in 
Figure 6(b). Since the convex hull produced 
inappropriate SPs (Figure 6(c)) and as a 
consequence of this, the CBC generated inaccurate 
contour points to represent the object properly 
which is clearly visible in Figure 6(d) being 
impossible to identify the cat. On the other hand, 
the FSPP algorithm produced sufficient and correct 
SPs (Figure 6(e)) and hence CBC generated a more 
accurate contour of the cat shown in Figure 6(f). 
Therefore, this result also proves the superior 
performance of FSPP over the convex hull. 

 
(a) Original image 

 
(b) Reference shape 

 

 
(c) Significant points by convex hull 

 
(d) Generated curve by CBC 

 

(e) Significant points by FSPP 

 

(f) Generated curve by CBC 

Fig. 7 (a) Original kangaroo image, (b) Reference 
shape, (c) Significant points by convex hull, (d) 

Generated curve by CBC, (e) Significant points by 
FSPP and (f) Generated curve by CBC. 

 

Another additional sample image analyzed 
was kangaroo image in Figure 7(a) and its 
corresponding reference boundary points are shown 
in Figure 7(b). The SPs generated by convex hull 
and the resultant shape produced by CBC are in 
Figures 7(c)-(d), and it is clearly visible that CBC 
fails to produce proper shape as convex hull 



 
 

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116 

 114

generated insufficient SPs to represent the object. 
Whereas, the SPs produced by FSPP algorithm and 
its respective shape produced by CBC in Figures 
7(e)-(f) precisely approximates the object. Hence, 
once again the supremacy of FSPP algorithm over 
the convex hull is proved. 

 
(a) Original image 

 
(b) Reference shape 

 
(c) Significant points by convex hull 

 
(d) Generated curve by CBC 

 
(e) Significant points by FSPP 

 
(f) Generated curve by CBC 

Fig.  8: (a) Original tiger image, (b) Reference shape 
(c) Significant points by convex hull, (d) Generated 

curve by CBC, (e) Significant points by FSPP and (f) 
Generated curve by CBC. 

One more example of a tiger image is given in 
Figure 8(a) while the boundary points of its 
reference shape are depicted in Figure 8(b). The 
convex hull generated SPs and CBC generated 
corresponding curve are shown in Figure 8(c) and 
Figure 8(d) respectively. The FSPP algorithm 
generated SPs and CBC generated corresponding 
curve are shown in Figure 8(e) and Figure 8(f) 
respectively. It is found from the Figures 8(c)-(f) 
that the FSPP algorithm produced better SPs than 
convex hull and hence CBC generated better shape 
for tiger object. As a result, the dominance of FSPP 
algorithm over convex hull is once again confirmed. 

 
(a) Original image 

 
(b) Reference shape 

 
(c) Significant points by convex hull 
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(d) Generated curve by CBC 

 

(e) Significant points by FSPP 

 

(f) Generated curve by CBC 

Fig.  9 (a) Original peacock image, (b) Reference 
shape, (c) Significant points by convex hull, (d) 

Generated curve by CBC, (e) Significant points by 
FSPP and (f) Generated curve by CBC. 

The final example of the peacock image is 
shown in Figure 9(a) while its reference shape 
descriptor in Figure 9(b). As CBC produced 
approximately accurate contour points of kangaroo 
with the SPs generated by the FSPP algorithm 
shown in Figures 9(e)-(f) in comparison with the 
contour points produced by CBC with SPs 
generated by convex hull shown in Figures 9(c)-
(d), this also proves that the FSPP algorithm 
outperforms the convex hull to generate proper 
significant points for any arbitrary shaped object. 

 

To assess the robustness of the FSPP 
algorithm, the SPs are generated for 420 images 
having different shaped objects while the FSPP 
algorithm always generated better SPs than convex 
hull for any shaped objects for all images and hence 
CBC always produced better or equal shape 

descriptor with the SPs produced by FSPP than that 
of produced by convex hull.  

 

Finally, to justify the threshold value, the 

value of maxT  was varied from 0 to 5. It was clearly 

seen that, when maxT =0, the FSPP produces 
maximum amount of SPs with better curve 
representation by CBC. While increasing the 

maxT value from 0 to 5 will reduce the number of 
SPs. For most of the cases, FSPP generates 
approximately similar curves while for some other 
cases it produces curves with insignificant shape 
distortion that is negligible. As increasing the 
number of SPs increases the time complexity, this 

motivated us to consider the maxT  value as 1 which 
reduces the number of generated SPs with shape 
produced by CBC with acceptable shape distortion 
using these SPs. But it may be any values according 
to desired level of SPs and shape approximation. 

 
6. CONCLUSION 

This paper has presented a new significant 
point generation technique namely finding 
significant points for parametric curve generation 
techniques (FSPP) which is able to generate proper 
SPs for the curve generation techniques. Using 
these SPs, it is possible to approximate appropriate 
shape descriptor of arbitrarily shaped objects using 
composite Bezier curve. The experimental results 
have shown that the FSPP algorithm has 
outperformed the convex hull algorithm in finding 
appropriate SPs and thereby can be used for better 
curve generation. As consequences, this increases 
the use of Bezier curve techniques in the field of 
image processing. 
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