
Southern Cross University
ePublications@SCU

Southern Cross Business School

2008

Finding significant points for parametric curve
generation techniques
Mohammed Riazur Rahman

M Ameer Ali
East West University

Golam Sorwar
Southern Cross University

ePublications@SCU is an electronic repository administered by Southern Cross University Library. Its goal is to capture and preserve the intellectual
output of Southern Cross University authors and researchers, and to increase visibility and impact through open access to researchers around the
world. For further information please contact epubs@scu.edu.au.

Publication details
Rahman, MR, Ali, MA & Sorwar, G 2008, 'Finding significant points for parametric curve generation techniques', IETECH Journal of
Advanced Computations, vol. 2, no. 2, pp. 107-116.

http://epubs.scu.edu.au
http://epubs.scu.edu.au/comm_pubs
mailto:epubs@scu.edu.au

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 107

 IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116
 © IETECH Publications, 2008

FINDING SIGNIFICANT POINTS FOR PARAMETRIC CURVE

GENERATION TECHNIQUES

Md. Riazur Rahman M. Ameer Ali G. Sorwar
Dept of Computer Science &

Engineering,
Daffodil International University,

Bangladesh.

Dept of Electronics and
Communication Engineering,

East West University,
Bangladesh

School of Commerce and
Management,

 Southern Cross University
Australia

ABSTRACT

The existing significant point generation techniques such as convex hull are unable to find the proper

significant points for irregular shaped objects. To address this issue, an algorithm namely finding significant
points for parametric curve generation techniques (FSPP) has been proposed in this paper that is able to find
out proper significant points which will further be used to produce required shape descriptor using
parametric curve generation techniques. Experimental results confirm the superior performance of FSPP
algorithm over convex hull in approximating significant points for all types of both regular and irregular
shaped objects.

Keywords: Shape descriptor, convex hull, Bezier curve, significant points, pattern recognition, and image
processing.

1. INTRODUCTION

Image processing is the most important field in
computer vision, image understanding, and coding
[1-3]. In a wide variety of image processing and
pattern recognition applications such as shape
descriptor for characters and objects, surface
mapping through to active lip shape modelling, and
face recognition [4-9], parametric curve generation
techniques i.e. Bezier curve (BC) [10-14] are used
to generate shape descriptors (shape contour points)
for a given set of significant point (SP). These SPs
can be either given manually or generated
automatically for the respective shape. For the
automatic generation of SPs for the curve
generation techniques [10-11] convex hull [15-18]
is used. However, the problem is that convex hull
generates SPs in such a way that it is unable to find
concave curves properly. As a consequence, if BC
is applied on these generated SPs, it generates a
distorted shape or contours. To address this issue,
this paper presents an algorithm, called finding
significant points for parametric curve generation
techniques (FSPP), which automatically generates
the SPs effectively even though the shape is either
convex or concave i.e. for all types of shapes. The
FSPP algorithm finds SP based on the perpendicular
distance of a shape point from the line passing

through two respective SPs. A perceptual threshold

()maxT is used to identify the SP. If a parametric
curve generation technique such as BC is used to
generate shape contour points using SPs generated
by FSPP, it always provide better curve
representation than that of generated by convex
hull.

This paper is organized as follows: Section 2

describes the mathematical modelling of Bezier
curve while Section 3 details the basic idea of
convex hull. The FSPP algorithm together with its
constituent three algorithms is presented in Section
4 with the experimental results in Section 5. Finally,
some conclusions are provided in Section 6.

2. BEZIER CURVE

The theory of Bezier curve (BC) is provided in
[10-14]. The BC generates contour points
considering global shape information, with the
curve always passing through the first and last SPs.
The degree of the Bezier polynomial depends on the
number of SPs, from which a blending function is
used to produce the position vector ()P t . If there

are 1L + SPs, the position is defined as

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 108

()kkk yxP ,: , Lk ≤≤0 considering 2-D
shapes. These coordinate points are then blended to
form ()P t , which describes the path of Bezier

polynomial function between 0P and LP :

 () (),
0

L

k k L
k

P t P BEZ t
=

= ∑ (1)

Where the Bezier blending function (),k LBEZ t
is known as the Bernstein polynomial, which is
defined as:

() (), 1 L kk
k L

L
BEZ t t t

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (2)

The recursive formula used to determine coordinate
positions is:

() () () (), , 1 1, 11k L k L k LBEZ t t BEZ t t BEZ t− − −= − +

(3)

Where, (),
k

k kBEZ t t= and

() ()0, 1 k
kBEZ t t= − .

The individual BC coordinates are represented

by the following pair of parametric equations:

(),
0

()
L

k k L
k

x t x BEZ t
=

= ∑ (4)

(),
0

()
L

k k L
k

y t y BEZ t
=

= ∑ (5)

An example of a BC is provided in Figure 1 with 4
SPs [13].

Fig. 1 Curve generated by Bezier Curve

However, since BC considers all the SPs to

generate the curve points and hence unable to
produce complex curves correctly and smoothly. To
represent complex curves higher degree Bezier
curves (BCs) can be used. But higher degree BCs
suffer from the problem of computational
complexity and undulation and can produce
unwanted oscillations [10, 11]. To avoid these
problems, alternatively, composite Bezier curve
(CBC) [10-14] is used to produce the desired level
of curves and which was also used in the
experiments for the proposed FSPP algorithm. CBC
uses the technique of joining several lower degree
BC segments together to approximate a shape.
Joining smaller segments also gives better control
over the shape of the curve in smaller regions. To
ensure the smoothness of the curve, continuity of
the BC segments should be maintained.

For a given set of SPs from the original shape,
a CBC can be formed by subdividing the SPs to
smaller sets of SPs each of which can be used to
produce lower degree Bezier segments and then can
be joined together according to the continuity
constraints. Mathematically, for n given SPs, m
sets of SPs can be produced each having)/(mn
SPs which can produce a CBC joining m BC
segments. A suitable example of a CBC is
presented in Figure 2 [14] joining two BC
segments.
3. CONVEX HULL

Computing a convex hull [15-18] is one of the
first sophisticated geometry algorithms. It works
based on determining the smallest convex set
containing a discrete set of points. Convex set (C)
of a set of points S is the set such that for all x
and y in C and t in interval {0, 1} the point at
position (1)t x ty− + is in C . Thus, each point on
the line segment joining x and y resides within

Fig. 1: Curve generated by composite Bezier curve

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 109

C which implies that convex set is connected. The
convex hull of an object is the minimal convex set
containing that object. The convex hull of a set of
points S in n dimensions is the intersection of all
convex sets containing S . The convex hull can be
described as the convex combination of the points
in S . For N points Nppp ,,, 21 K in S , the
convex hull is given by the following expression:

⎭
⎬
⎫

⎩
⎨
⎧

=≥≡ ∑∑
==

10:
11

N

i
ii

N

i
ii andiallforpCH λλλ

(6)
Where, CH denotes convex hull. If all the points
are not on the same line then convex hull is a
polygon. In case of collinear points the convex hull
is a straight line. A suitable example of convex hull
from [17] is shown in Figure 3 where it is clearly
visible that all the data points are surrounded by a
minimum number of points each of which is treated
as a SP.

Fig. 2: Convex hull representation

There exists several methods for computing

convex hull of which Graham scan, Jarvis march,
Divide & conquer, and Quickhull are the most
popular ones [18-21]. The properties of all the
convex hull algorithms restrict them to only convex
objects. They can not be used to produce SPs for a
concave object limiting their capability in terms of
describing boundary of any object. To resolve this
problem an algorithm for generating proper SPs for
the curve generation techniques is presented in the
following section.

4. THE MODELLING OF FSPP ALGORITHM

This section formally presents an algorithm to
generate SPs for curve generation techniques like
Bezier curve (BC) namely finding significant points
for parametric curve generation techniques (FSPP)
together with its three constituent algorithms called
rearrange boundary points (Algorithm 1), generate

significant points (Algorithm 2) and interpolate
significant points (Algorithm 3). The first
constituent algorithm of the proposed FSPP
algorithm is detailed in the following section.

4.1 Rearranging Boundary Points

Since the boundary points scanned from an
object may not be arranged in a sequential manner
and in this case, it is mandatory to rearrange the
boundary points in either clockwise or anti-
clockwise to generate SPs using FSPP, an algorithm
is presented in this section to rearrange the
boundary points. To rearrange the boundary points,
a point is taken arbitrarily as the first point (Step 1
of Algorithm 1) and considered as the current point
(Step 2). It needs to find the Euclidian distances of
all points from the current point (Step 3) to
determine the next point by applying the concept of
both absolute and relative chain codes [22, 23]. To
select the next point, firstly the direction of the
previous point is considered as shown in Figure 4.
If a point with unit distance is found in the same
direction of the previous point that will be treated as
the next point regardless of the directional sequence
presented in Figure 4. But, if there is no point
which has the similar direction as the previous
point, then the next point will be selected based on
the sequence of the directions i.e. if a point in
sequence 1 is found it will be selected as the next
point, if not and a point in sequence 2 is found then
it will be selected and so on.

Fig. 4 Directional sequence

For scanning reasons, there may not be found

any point with unique distance due to missing
boundary points at the time of scanning. In this case
the closest point from the current point at minimum
distance will be the next point. Afterwards, the
current point is stored in a sequential manner along
with the previously stored points and the next point
is considered as the current point (Step 5). This

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 110

process is repeated until a closed boundary is found
(Step 6). But if the distance of the first point from
the current point (fD) is smaller or equal to that of

the closest point from the current point (minD)
i.e. minfD D≤ , then the start or the first point will be
taken as the current point and the process is closed
as the closed boundary is received.

Algorithm 1: Rearrange boundary points.
Precondition: Boundary Points.
Post condition: Arranged Boundary points in B .
1) Choose a boundary point arbitrarily as the first

point FP .

2) Current point CP = FP .
3) Calculate the distances of all boundary points

from CP .

4) Find the next point NP as mentioned in Section
4.1.

5) Store CP and CP = NP .
6) Repeat step 3 to 5 until a closed boundary is

reached.

4.2 Generating Significant Points

The significant point generation technique is
detailed in Algorithm 2. After rearranging the
boundary points using Algorithm 1, SPs are
generated. To begin the process any one of the
boundary points is chosen as the first SP shown in
Step 2. The distances of all the boundary points
from the first SP are calculated (Step 3) and the
boundary point with the largest distance is treated as
the second SP (Step 4). All the boundary points
between any two consecutive significant points are
extracted and then the perpendicular distances of all
of these boundary points from the line passing
through these two corresponding SPs are calculated
in Step 5(a) and then the maximum distance
()max_dist is obtained (Step 5(b)). If

()maxmax_dist T> , then the respective boundary
point will be another SP (Step 5(c)). This process is
applicable for all consecutive pair of SPs. For the
next process, the SPs are rearranged and the Flag is
set to TRUE. If there is no boundary point found
left for which ()maxmax_dist T> is true, the
process will stop (Step 5 (d)).

Algorithm 2: Generate significant points.
Precondition: Arranged set of boundary points and

maxT .

Post condition: Generated Significant Points C .
1) Flag=TRUE.
2) Choose one point randomly which is the first

SP.
3) Calculate distances of the first SP with all

shape points.
4) The point with the largest distance will be the

second SP.
5) DO WHILE (Flag),

a) Calculate perpendicular distances of the
shape points which lie between two
consecutive SPs from the line passing
through these two corresponding SPs.

b) Find maximum distance max_dist

c) IF ()maxmax_dist T> THEN
i) The corresponding shape point will be

another SP.
ii) Do this for every consecutive pair of

SPs.
iii) Rearrange SPs in the similar way of

boundary points.
iv) Flag=TRUE.

d) ELSE
 IF For every consecutive pair of SPs
()maxmax_dist T≤ THEN
 Flag=FALSE.

e) END IF
6) END DO WHILE

If there is any long straight line boundary, this
algorithm will produce SPs with large gap within
that line and hence CBC will be unable to generate
the expected contour points. To address this issue, it
needs to interpolate some new SPs when there is a
large gap between two SPs and an algorithm for this
purpose is described in the following section.

4.3 Interpolating Significant Points

This section presents an algorithm to
interpolate new SPs between a pair of SPs having
large gap which is detailed in Algorithm 3. After
generating SPs using Algorithm 2, the distances
()1, +∆ ii between every consecutive pair of SPs are
calculated (Step 1 of Algorithm 3). To generate a
smooth curve, it needs to find out the SPs
approximately after the same gap as CBC generates
curve points based on the SPs. For this reason, the

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 111

average distance ()avg∆ of 1, +∆ ii where

1 i n≤ ≤ and n is the number of SPs, is used as a
measurement to insert additional SP (Step 2) where:

∑
=

+∆=∆
n

i
iiavg n 1

1,
1

 (7)

If ()avgii ∆>∆ +1, , then a boundary point having

avg∆ distance from thi SP is considered as another
SP (Step 3). This process will continue till
()avgii ∆>∆ +1, is true for any pair of consecutive
SPs (Step 4).

Algorithm 3: Interpolate significant point.
Precondition: Significant Points of an object.
Post condition: Final Interpolated Significant
Points C .
1) Calculate the distance ()1, +∆ ii between every

consecutive pair of SPs.
2) Calculate the average distance ()avg∆ of

distances ()1, +∆ ii .

3) FOR all i , IF ()avgii ∆>∆ +1, THEN consider

a boundary point as SP that is avg∆ distance

apart from the thi SP.
4) REPEAT Step 3 Until for all i ,

avgii ∆≤∆ +1, .

Based on the above mentioned three constituent
algorithms, the formal FSPP algorithm is detailed in
the following section.

4.4 The FSPP Algorithm

The FSPP algorithm is detailed in Algorithm 4.
The boundary points are arranged in a sequence
using Algorithm 1 (Step 1). Then, the SPs are
generated using Algorithm 2 (Step 2) from the
rearranged boundary points of the corresponding
object. As mentioned in Section 4.2, CBC is unable
to generate a smooth curve if there is large gap
between two consecutive SPs which motivated to
find some new SPs applying Algorithm 3 (Step 3).
Finally, the CBC is used to generate a proper shape
descriptor to prove the superiority of the FSPP
algorithm (Step 4).

Algorithm 4: Finding significant points for
parametric curve generation techniques (FSPP).
Precondition: Boundary points of an object.
Post condition: Final Significant Points C .
1. Arrange the boundary points using Algorithm

1.
2. Generate SPs using Algorithm 2.
3. Interpolate new SPs using Algorithm 3.
4. Apply CBC with generated SPs to approximate

the shape contour.

5. EXPERIMENTAL RESULTS

To assess the performance of the proposed
FSPP algorithm, all the related algorithms are
implemented using Matlab 6.1. The experiments
have been conducted using different images having
different shapes and orientation. The generated
contour produced by CBC for SPs produced by
convex hull is compared with that for SPs produced
by FSPP. To represent foreground objects, the
background of images are manually removed by
setting it zero. Any zero valued foreground pixels
are replaced by one which does not impact upon the
visual perception. For better visual representation,
the generated significant points and the contour
points are represented using different colours and
symbols such as ‘□’ and ‘-’ respectively. The SPs
generated by convex hull is represented by magenta
‘□’ and the corresponding curve points produced by
CBC is represented by green ‘-’ while these for
FSPP are represented by cyan ‘□’ and red ‘-’ with
different colour rather than their original gray-scale
pixel intensities. The value of perceptual threshold

maxT is set to 1 in all experiments.

(a) Original image

(b) Reference shape

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 112

(c) Significant points by convex hull

(d) Generated curve by CBC

(e) Significant points by FSPP

(f) Generated curve by CBC

Fig. 5 (a) Original bird image, (b) Reference shape, (c)
Significant points by convex hull, (d) Generated curve
by convex hull, (e) Significant points by FSPP and (f)

Generated curve by CBC.

The first set of experimental results relates to
the Figure 5(a) image having a bird object with
arbitrary shape. The reference shape or boundary
points which are achieved by scanning the boundary
is shown in Figure 5(b). The SPs generated by
convex hull and the generated contour produced by
CBC are given in Figure 5(c) and Figure 5(d)
respectively. Similarly, the SPs generated by the
proposed FSPP algorithm and the corresponding
contour points generated by CBC are shown in
Figure 5(e) and Figure 5(f) respectively. It is clear
from Figures 5(c)-(d) that convex hull generated

ineffective SPs for this arbitrary shaped object and
hence CBC produced an erroneous shape with
losing its originality. In contrast, the FSPP
generated the sufficient number of correct SPs
shown in Figure 5(e) and hence CBC produced
approximately similar contour in comparison with
the reference boundary in (Figure 5(b)). It proves
the superior performance of FSPP algorithm over
convex hull.

(a) Original image

(b) Reference shape

(c) Significant points by convex hull

(d) Generated curve by CBC

(e) Significant points by FSPP

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 113

(f) Generated curve by CBC

Fig. 6: (a) Original cat image, (b) Reference shape, (c)
Significant points by convex hull, (d) Generated curve

by CBC, (e) Significant points by FSPP and (f)
Generated curve by CBC.

Another sample image analyzed was a cat
image which has arbitrary shape in Figure 6(a) with
its corresponding reference boundary points in
Figure 6(b). Since the convex hull produced
inappropriate SPs (Figure 6(c)) and as a
consequence of this, the CBC generated inaccurate
contour points to represent the object properly
which is clearly visible in Figure 6(d) being
impossible to identify the cat. On the other hand,
the FSPP algorithm produced sufficient and correct
SPs (Figure 6(e)) and hence CBC generated a more
accurate contour of the cat shown in Figure 6(f).
Therefore, this result also proves the superior
performance of FSPP over the convex hull.

(a) Original image

(b) Reference shape

(c) Significant points by convex hull

(d) Generated curve by CBC

(e) Significant points by FSPP

(f) Generated curve by CBC

Fig. 7 (a) Original kangaroo image, (b) Reference
shape, (c) Significant points by convex hull, (d)

Generated curve by CBC, (e) Significant points by
FSPP and (f) Generated curve by CBC.

Another additional sample image analyzed
was kangaroo image in Figure 7(a) and its
corresponding reference boundary points are shown
in Figure 7(b). The SPs generated by convex hull
and the resultant shape produced by CBC are in
Figures 7(c)-(d), and it is clearly visible that CBC
fails to produce proper shape as convex hull

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 114

generated insufficient SPs to represent the object.
Whereas, the SPs produced by FSPP algorithm and
its respective shape produced by CBC in Figures
7(e)-(f) precisely approximates the object. Hence,
once again the supremacy of FSPP algorithm over
the convex hull is proved.

(a) Original image

(b) Reference shape

(c) Significant points by convex hull

(d) Generated curve by CBC

(e) Significant points by FSPP

(f) Generated curve by CBC

Fig. 8: (a) Original tiger image, (b) Reference shape
(c) Significant points by convex hull, (d) Generated

curve by CBC, (e) Significant points by FSPP and (f)
Generated curve by CBC.

One more example of a tiger image is given in
Figure 8(a) while the boundary points of its
reference shape are depicted in Figure 8(b). The
convex hull generated SPs and CBC generated
corresponding curve are shown in Figure 8(c) and
Figure 8(d) respectively. The FSPP algorithm
generated SPs and CBC generated corresponding
curve are shown in Figure 8(e) and Figure 8(f)
respectively. It is found from the Figures 8(c)-(f)
that the FSPP algorithm produced better SPs than
convex hull and hence CBC generated better shape
for tiger object. As a result, the dominance of FSPP
algorithm over convex hull is once again confirmed.

(a) Original image

(b) Reference shape

(c) Significant points by convex hull

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 115

(d) Generated curve by CBC

(e) Significant points by FSPP

(f) Generated curve by CBC

Fig. 9 (a) Original peacock image, (b) Reference
shape, (c) Significant points by convex hull, (d)

Generated curve by CBC, (e) Significant points by
FSPP and (f) Generated curve by CBC.

The final example of the peacock image is
shown in Figure 9(a) while its reference shape
descriptor in Figure 9(b). As CBC produced
approximately accurate contour points of kangaroo
with the SPs generated by the FSPP algorithm
shown in Figures 9(e)-(f) in comparison with the
contour points produced by CBC with SPs
generated by convex hull shown in Figures 9(c)-
(d), this also proves that the FSPP algorithm
outperforms the convex hull to generate proper
significant points for any arbitrary shaped object.

To assess the robustness of the FSPP
algorithm, the SPs are generated for 420 images
having different shaped objects while the FSPP
algorithm always generated better SPs than convex
hull for any shaped objects for all images and hence
CBC always produced better or equal shape

descriptor with the SPs produced by FSPP than that
of produced by convex hull.

Finally, to justify the threshold value, the

value of maxT was varied from 0 to 5. It was clearly

seen that, when maxT =0, the FSPP produces
maximum amount of SPs with better curve
representation by CBC. While increasing the

maxT value from 0 to 5 will reduce the number of
SPs. For most of the cases, FSPP generates
approximately similar curves while for some other
cases it produces curves with insignificant shape
distortion that is negligible. As increasing the
number of SPs increases the time complexity, this

motivated us to consider the maxT value as 1 which
reduces the number of generated SPs with shape
produced by CBC with acceptable shape distortion
using these SPs. But it may be any values according
to desired level of SPs and shape approximation.

6. CONCLUSION

This paper has presented a new significant
point generation technique namely finding
significant points for parametric curve generation
techniques (FSPP) which is able to generate proper
SPs for the curve generation techniques. Using
these SPs, it is possible to approximate appropriate
shape descriptor of arbitrarily shaped objects using
composite Bezier curve. The experimental results
have shown that the FSPP algorithm has
outperformed the convex hull algorithm in finding
appropriate SPs and thereby can be used for better
curve generation. As consequences, this increases
the use of Bezier curve techniques in the field of
image processing.

Corresponding Author

Md. Riazur Rahman
Assistant Professor
Dept of Computer Science & Engineering,
Daffodil International University, Bangladesh.

REFERENCES
[1] I. Gath, and A. B. Geva, Unsupervised Optimal

Fuzzy Clustering, International Journal of
Pattern Analysis and Machine Intelligence,
2(7), pp.773-781, 1989.

IETECH Journal of Advanced Computations, Vol: 2, No: 2, 107 - 116

 116

[2] J.C. Bezdek, Pattern Recognition with Fuzzy
Objective Function Algorithm (New York:
Plenum Press, 1981).

[3] M. Ameer Ali, G.C. Karmakar, and L.S.
Dooley, Fuzzy image segmentation of generic
shaped clusters, IEEE International Conference
on Image Processing, 2005.

[4] M. Sarfraz, M.R. Asim, and A. Masood,
Capturing outlines using cubic Bezier curves,
IEEE International Conference on Information
and Communication Technologies: From
Theory to Applications, 2004.

[5] S. Pal, P.K. Biswas, and A. Abraham, Face
recognition using interpolated Bezier curve
based representation, International Conference
on Information Technology: Coding and
Computing, 2004.

[6] I. Shdaifat, I. Grigat, and D. Langmann, Active
shape lip modelling, IEEE International
Conference on Image Processing, 2003.

[7] H. Lin, L. Liu, and G. Wang, Boundary
evaluation for interval Bezier curve. Computer-
Aided Design, 34(9), p. 637-646, 2002.

[8] M. Sarfraz and M.A. Khan, Automatic outline
capture of Arabic fonts. Information Sciences,
140(3-4), p. 269-281, 2002.

[9] H.M. Yang, J.J. Lu, and H.J. Lee, A Bezier
curve-based approach to shape description for
Chinese calligraphy characters, International
Conference on Document Analysis and
Recognition, 2001.

[10] S.H. Francis, Computer Graphics (New Jersey:
Prentice Hall, 1994).

[11] D. Hearn and M.P. Baker, Computer Graphics
(New Jersey: Prentice Hall, 1994).

[12] F.A. Sohel, L.S. Dooley, and G.C. Karmakar, A
dynamic Bezier curve model, IEEE
International Conference on Image Processing,
2005.

[13] http://en.wikipedia.org/wiki/Bezier_curve, Last
date of access: 2/6/2007.

[14] S. R. BUSS, 3-D Computer Graphics (New
York: Cambridge University Press, 2003).

[15] P.F. Preparata and I.M. Shamos, Computational
geometry (New York: Springer Verlag Inc,
1985).

[16] http://mathworld.wolfram.com/ConvexHull.ht
ml, Last date of access: 18/05/07.

[17] http://www.cs.princeton.edu/~ah/alg_anim/vers
ion1/ConvexHull.html, Last date of access:
17/05/2007.

[18] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms (Second Edition,
MIT Press and McGraw-Hill, 2001).

[19] P.F. Preparata and S.J. Hong, Convex Hulls of
Finite Sets of Points in Two and Three
Dimensions, Commun.ACM, vol. 20, no. 2, pp.
87–93, 1977.

[20] M. de Berg; M. van Kreveld, Mark Overmars
and O. Schwarzkopf, Computational Geometry,
Algorithms and Applications (Springer, 2000).

[21] C.B. Barber, D.P. Dobkin, and H.T.
Huhdanpaa, The Quickhull algorithm for
convex hulls, ACM Trans. on Mathematical
Software, 22(4):469-483, Dec 1996.

[22] http://www.mind.ilstu.edu/curriculum/chain_co
des_intro/chain_codes_intro.php, Last date of
access: 29/05/2007.

[23] R. C. Gonzales and R. E. Woods, Digital Image
Processing (New Jersey: Prentice Hall, 2002)

	Southern Cross University
	ePublications@SCU
	2008

	Finding significant points for parametric curve generation techniques
	Mohammed Riazur Rahman
	M Ameer Ali
	Golam Sorwar
	Publication details

	Microsoft Word - 107-116AC0816.doc

