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Abstract 

Although logging ceased in the tropical rainforests of north Queensland following their 

World Heritage Listing in 1988, they provide a good basis for simulation studies on 

sustainability of timber harvesting as reliable logging records, inventory and growth data are 

available. A growth model for these forests has been developed and published. The growth 

model is dynamic, responding to changes in stand density, composition and management 

history. A harvesting simulator predicts the trees removed by selection logging, and predicts 

changes in the residual stand. Simulation studies employ cutting cycle analysis and yield 

scheduling to demonstrate the sustainability of harvesting. These studies indicate that 

selection harvesting could sustain a viable timber harvest of about 60 000 m3 year-1. These 

results are indicative rather than definitive, as the model has not yet been formally validated 

with independent data. 

Introduction 

 

A century of timber production ceased in 1988 when tropical rainforests of north 

Queensland were included in the World Heritage List and further logging was banned. 

However, the availability of reliable logging records, inventory and growth data make these 

forests good candidates for simulation studies on sustainability of timber harvesting. These 

forests are located between 16 and 19º south and are confined to a narrow belt of coastal 

ranges receiving a relatively high rainfall (greater than 1500 mm year-1). 

One currently controversial issue is whether timber harvesting from tropical rainforests is 

sustainable. Certainly there are many examples where indiscriminate logging has occurred, 

often preceding clearing for agriculture or leading to serious land degradation. In contrast, 

timber harvesting operations in north Queensland have been supervised by the Forest Service 

and follow conservative silvicultural practices defined in tree-marking guidelines (Preston and 

Vanclay, 1988) and in conditions which limit road and track construction for timber 

harvesting and extraction (Ward and Kanowski, 1985). 

Several studies have examined impacts of timber harvesting in these forests. Whilst timber 

harvesting causes localised destruction, its impacts may be localised and the ecological 

impact may be less than the visual impact. Crome et al. (1992) found that logging tracks and 

canopy loss were confined to 5% and 20% of the area, respectively. However, the light 

climate may be altered in areas with no direct canopy loss. Nicholson et al. (1988) found that 

logging did not lead to loss of any tree species. Stocker (1981, 1983), Unwin et al. (1988) and 

Webb and Tracey (1981) have investigated other aspects of the dynamics and regenerative 

capacity of these rainforests. Crome and Moore (1989) discussed effects of logging on some 

fauna. Gilmour (1971) found that effects of logging on stream flow and sedimentation were 



small scale and short lived. Gillman et al. (1985) examined soil chemical properties and found 

that most topsoil nutrients regained their initial levels within 4 years after logging. Whilst 

nutrient cycles were disrupted by logging, losses appeared to be small and quickly replaced 

by natural inputs, provided that logging was of low intensity, short duration and infrequent 

(Congdon and Lamb, 1990). 

It has been estimated that a timber harvest of 60 000 m3 year-1 could be sustained from 

these forests (Preston and Vanclay, 1988). Vanclay and Preston (1989) examined the long-

term sustainability of such a harvest, and concluded that selection logging could be sustained 

by the growth of residual trees and regeneration, and need not rely upon trees missed during 

previous harvests. Research into the relationship between diameter (breast high or above 

buttress, over bark) and log volume provided no evidence to suggest that there was any 

increase in defect or any reduction in log length in trees harvested from previously logged 

stands (Henry, 1989). Vanclay (1990) demonstrated that repeated selection harvesting had no 

measurable long-term effect on the growth rates of individual trees in these forests. 

This simulation study demonstrates a practical application of a growth model and examines 

different methodologies which may be used to estimate long-term yields. The model is used 

to estimate short- and long-term timber yields, and to examine if the recent timber harvesting 

practices would have been sustainable in terms of timber production. 

Calculation of the sustainable yield 

Calculation of the sustainable yield entails several basic operations. 

• The area of forest zoned for and capable of producing timber is determined. 

Forest subject to special management (e.g. Scientific Areas, buffer strips along 

creeks), and inaccessible or unproductive forest is excluded. 

• A detailed description of the existing forest is prepared from inventory which 

entails the measurement of temporary plots and recording the species, size and 

merchantability of each tree within the plot. 

• The future condition (number, size and merchantability of trees) of each 

inventory plot is predicted by simulating the growth (diameter increment, 

mortality and recruitment) of the residual forest over time. 

• At selected intervals, a timber harvest is simulated to indicate which stems would 

be removed in logging, and to predict mortality to the residual stand arising from 

felling and snigging damage. 

• The anticipated harvest volume is then calculated using volume equations. 

• The growth and harvesting of each inventory plot is simulated over a long period 

to ensure the continuity of future timber harvests. 

This procedure provides an estimate of the timber yield which can be sustained under the 

specified management regime and assumed economic conditions. Timber harvesting can be 

sustained at any level not exceeding this yield. 

 

Area estimates 

Area estimates are an essential component of the resource forecast, and due account must be 

taken of unproductive land such as rock outcrops, stream buffers, and other areas which 

cannot be logged. The present calculation employs data derived from a Geographical 

Information System ( GIS) which was compiled to assist in planning and management of the 

Wet Tropics region. The GIS is a vector-based system (ESRI Arc/Info) and includes both 

anthropogenic and environmental information, mostly captured at 1:50 000 scale. This system 

was used to calculate the gross productive area utilised for timber production within the study 

area (Table 1) . Data were digitised primarily from timber management maps and include 

tenure, management intention, logging history, etc. These maps were prepared by field staff 

during 1978-1980 using historical timber sales records dating back to the mid-1950’s, and 



have been regularly updated. Where no records were available, estimates of accessibility and 

productivity were prepared from interpretation of 1:25 000 scale aerial photographs. 

The GIS was used to stratify on geology, bioclimatic zone, logging and treatment history, 

and subcatchment. Islands of rainforest less than 10 ha were ignored. Stratum ‘slivers’ smaller 

than 10 ha were amalgamated with adjoining strata. The GIS computed the gross productive 

area within each such stratum. 
 

Table 1. Rainforest areas at cessation of logging in 1988 (Anonymous, 1989) 
Category 

Study area 

(Townsville- 

Cooktown) 

(ha) 

Total north 

Queensland area 

(ha) 

Nett timber production area 
153100 153100 

Stream buffers, inaccessible, etc. 31000 31000 

Gross timber production area 184100 184100 

Other land uses (catchment protection, etc.) 354500 495400 

Total State forest, timber reserve and other Crown land 538600 679500 

National Park 126900 200300 

Other tenures (aboriginal, private) 66000 148800 

Total rainforest 731500 1028600 

 

Not all of the timber production area provides an accessible timber harvest - it may include 

small fragments of inaccessible or unproductive land too small to show on maps and too 

small to be detected with remote sensing. Accordingly, a netting factor is used to reduce the 

gross productive area to a net productive area for use in yield calculations. 

Preston and Vanclay (1988) identified two components comprising the netting factor. One 

indicated the probability that any plot would be accessible to logging equipment; the other 

indicated the availability of trees on accessible plots. Preston and Vanclay (1988) reported 

that 95.6% of trees on accessible plots were available for harvesting, and this coefficient has 

been used to account for stream buffers, etc. In theory, this estimate could have been revised 

using the GIS to estimate the actual area of stream buffer within each stratum. However, at 

the time these data were prepared, the streams could not be characterised sufficiently within 

the GIS to indicate the size of buffer required, and it was felt that the existing adjustment was 

preferable to an estimate from the GIS. 

Statistical analyses on field data indicated a strong correlation between topographic slope 

and plot accessibility, and the following relationship was fitted by maximum likelihood 

estimation: 

  

where P is the probability that a plot will be accessible for logging, SLOPE is the 

topographic slope in degrees, and SOIL is a binary variable which takes the value 1 on soils 

derived from coarse granite parent materials, and 0 elsewhere. If SLOPE exceeded 28º, P 

was set to zero. Thus the netting factor (NF) for each stratum was estimated ac 

  
where n is the number of points at which the slope was estimated, and Pi was estimated from 

eqn (1). A digital elevation model was used to provide systematic samples of slope within 

each stratum. 

Inventory 

A total of 518 inventory plots established during the period 1981-1988 were used in the 

current calculation. Three different types of plots have been employed over this period. 



During the period 1981-1983, inventory employed variable area plots with sampling 

proportional to size. Individual plots comprised clusters of ten point samples in which an 

optical wedge with a basal area factor ( BAF) of 10 m2 ha-1 was used, and all stems exceeding 

3 cm diameter (at breast height or above buttress, over bark) were measured. During 1984, 

fixed area plots were favoured. All stems exceeding 30 cm diameter were sampled on a 0.5 ha 

plot, and stems exceeding 20 cm diameter were sampled on a 0.125 ha subsample. From 1985 

to 1988, plots were established using a new approach. These plots sampled all stems 

exceeding 40 cm diameter over 1 ha, and used four point samples (BAF 2.3 m2 ha-1) to sample 

stems 3-40 cm diameter. These plots were preferred by field staff, who felt that they provided 

a better indication of the anticipated harvest. 

There is no compelling statistical advantage in the use of any of these types of plot in 

preference to the others for description of the current stand or to provide forecasts. For 

quantifying the existing stand, there is some advantage in having a large heterogeneous plot to 

minimise between-plot variation. 

Conversely, for simulation studies, a smaller homogeneous plot may be more appropriate. In 

practice, cost factors and the preference of field staff are of greater consequence, provided 

that the plot gives a reasonable representation of the forest at that point. 

Table 2 indicates the average stand table for the study area. Tree sizes are reported as at the 

time of inventory, and no growth has been simulated. The stand table is a simple average of 

all plots, and has not been weighted by the stratum areas. The strong reverse-J size 

distribution of trees and the large number of tree species are noteworthy. This is an average 

stand table, and may not be representative of the forest at any particular location. Inventory 

plots in the study area have recorded ten to 40 tree ‘species’ per plot. The actual number of 

true species may be higher, as inventory employs the standard trade name rather than the 

correct taxonomy, and trade names may apply to more than one taxon. Some species have 

neither trade nor common names, and these are simply grouped as miscellaneous. A total of 

248 species codes have been recorded on inventory plots within the study area. 

The growth model simulates a notional 1-ha plot, and data from all three plot types are 

converted to per-hectare values to allow input to the model. 

Table 2. Stand table at time of inventory (stems ha
-1
 by species and size class) 

Size class (cm dbh ob or above buttress) 
Standard trade name Specific name Harvest 

group 20-39 40-49 50-59 60-69 70-79 80-89 90-99 100+ 
Total 

40+ 

Northern silky oak Cardwellia sublimis A-2 3.8 1.3 1.0 0.6 0.4 0.2 0.1 0.1 3.6 

Silver ash Flindersia bourjotiana A-3 6.6 1.8 1.0 0.4 0.2 0.0 0.0 0.0 3.5 

Rose butternut Blepharocarya involucrigera C 3.7 1.5 1.1 0.5 0.2 0.1 0.0 0.0 3.4 

Maple silkwood Flindersia pimenteliana A-2 3.8 1.2 1.0 0.5 0.3 0.1 0.1 0.0 3.3 

Yellow walnut Beilschmiedia bancroftii C 1.1 0.9 0.9 0.5 0.3 0.1 0.1 0.0 2.8 

Red tulip oak Argyrodendron peralatum1 B 3.3 0.9 0.5 0.3 0.1 0.0 0.0 0.0 1.9 

Kuranda satinash Syzygium kuranda C 6.6 1.0 0.5 0.2 0.1 0.0 0.0 0.0 1.8 

Tulip sterculia Franciscodendron laurijolium1 - 8.5 1.2 0.5 0.1 0.0 0.0 0.0 0.0 1.8 

Brown salwood Acacia aulacocarpa1 D-2 2.8 0.8 0.4 0.3 0.1 0.1 0.0 0.0 1.7 

Sassafras Doryphora aromatica1 C 4.6 0.7 0.6 0.3 0.1 0.0 0.0 0.0 1.7 

Macintyre's boxwood Xanthophyllum octandrum N 5.3 0.9 0.5 0.1 0.0 0.0 0.0 0.0 1.6 

Blush alder Sloanea australis ssp. parviflora D-1 1.3 0.7 0.4 0.2 0.1 0.0 0.0 0.0 1.5 
Queensland maple Flindersia brayleyana A-2 1.9 0.4 0.3 0.2 0.2 0.1 0.1 0.0 1.2 

Rose alder Caldcluvia australiensis C 1.1 0.4 0.3 0.3 0.1 0.0 0.0 0.0 1.2 
Caledonian oak Carnavonia araliifolia N 2.1 0.6 0.4 0.2 0.0 0.0 0.0 0.0 1.2 

Rolypoly satinash Syzygium endophloium1 - 2.4 0.4 0.2 0.1 0.1 0.1 0.0 0.0 1.0 

Satin sycamore Ceratopetalum succirubrum C 1.0 0.4 0.3 0.2 0.1 0.0 0.0 0.0 1.0 

Pink alder Gillbeea adenopetala - 2.1 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.9 

Bollywood Litsea leefeana1 D-2 3.7 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.9 

Miscellaneous   64.1 4.3 1.5 0.6 0.2 0.1 0.0 0.0 6.7 

Others (228 species codes)  85.8 16.2 8.8 4.4 2.4 1.3 0.6 0.7 34.4 

Total   215.7 36.9 20.7 10.2 5.0 2.3 1.1 1.0 77.2 

1. As the trade name for this timber applies to more than one species, other related species may be included in this category. 



Growth model 

An integral part of yield forecasting is growth prediction. Growth models for plantations 

and for monospecific forests have become sophisticated and highly accurate. Rainforests 

comprise hundreds of species, posing a much more difficult challenge. Notwithstanding this, 

a dynamic growth model for rainforests has been developed and was used in the present 

study. The model is an enhanced version of one described by Vanclay (1989a) and the data 

upon which it is based is summarised in Rainforest Research in North Queensland 

(Queensland Department of Forestry, 1983) and by Vanclay (1990). Enhancements are 

described by Vanclay (1991a,b,c,d, 1992). 

 

Site productivity 

The growth model has functions for diameter increment, tree deterioration and mortality, 

and recruitment of new trees into the stand. These functions take into account the site quality, 

soil parent material, the stand composition and density, and the size of the individual trees. 

Site quality, expressed as a growth index in the range 0-10, can be determined two ways. The 

most reliable method is to use the historical growth rates observed, but this method is only 

available for permanent plots. For these plots, the growth index was estimated using 

Vanclay's (1989b) Equation 13: 

  
where GI is the growth index of the plot, Dij is the diameter (breast high or above buttress, 

over bark, in cm) of tree j of species i, DIij is its diameter increment (cm year-1), OBAij is its 

‘overtopping basal area’, the basal area of trees within the plot that are bigger than tree ij (m2 

ha-1), BA is the plot basal area (m2 ha-1), and the βs are parameters estimated by linear regres-

sion. This equation estimates growth index, a measure of site productivity based on the 

diameter increment adjusted for tree size and competition, of all trees of 18 reference species 

(Acronychia acidula, Alphitonia whitei, Argyrodendron trifoliolatum, Cardwellia sublimis, 

Castanospora alphandii, Cryptocarya angulata, Cryptocarya mackinnoniana, Darlingia 

darlingiana, Elaeocarpus largiflorens, Endiandra sp. aff. Endiandra hypotephra, Flindersia 

bourjotiana, Flindersia brayleyana, Flindersia pimenteliana, Litsea leefeana, Sterculia 

laurifolia, Syzygium kuranda, Toechima erythrocarpum, Xanthophyllum octandrum) using all 

available re-measures for the plot (except that where plots were re-measured more frequently, 

re-measurements were selected to achieve approximately 5-year intervals). The βs were 

estimated by fitting the equation 

Log (DI+a) =Spp +D Spp +Log (D) Spp +Log(BA) Spp +OBA Spp + Log (D) Plot 

(where Spp and Plot are qualitative variables) simultaneously for all these reference species in 

the development data set (80 plots, a further 64 plots were used for validation studies). The 

parameter a was assigned the value 0.02 after inspection of residuals and examining the 

residual mean squares from a range of values (Vanclay, 1989b). The value 0.08808 was 

subjectively determined to scale the growth indices into the range 0-10. 

For temporary inventory plots used in the yield simulation studies, the growth index cannot 

be determined from past growth, but was estimated by inference from the soil parent material 

and the presence or absence of several indicator species on the plot (Vanclay, 1989b eqn. 

(10)): 

  



where all variables are binary (0, 1) variables which take the value 1 if the geology or species 

is present on the plot, and 0 otherwise, and BLO is blush silky oak (Bleasdalea bleasdalei and 

Opisthiolepis heterophylla), SBN is salmon bean (Archidendron vaillantii), VTX is vitex 

(Vitex acuminata), RAP is rapanea (Rapanea achradifolia), BUA is buff alder (Apodytes 

brachystylis), RBN is rose butternut (Blepharocarya involucrigera), CLL is cinnamon laurel 

(Cryptocarya cinnamonifolia and some affiliated species), and BGR is brown gardenia 

(Randia fitzalanii), and where the geology AL is alluvial, BV is basic volcanic, AV is acid 

volcanic, CG is coarse granite, SM is sedimentary-metamorphic, and TG is Tully fine-grained 

granite. Note that whilst the various geology types are mutually exclusive, any number of 

species may be present and used to evaluate the growth index. None of these species are 

short-lived pioneer species, and the presence/absence of these species should be relatively 

independent of successional status and disturbance. 

 

Diameter increment 

There are four components of growth and change which must be predicted. The growth in 

diameter and change in merchantability of individual trees must be simulated. The deaths of 

trees needs to be modelled, and recruitment of new trees into the stand has to be estimated. 

It is impractical to develop individual functions for each of the several hundred tree species 

represented in north Queensland rainforests. Accordingly, species were grouped to enable 

more efficient estimation of prediction functions. Different groupings were used to develop 

each of the functions required for the model, as studies suggested that a single grouping for all 

functions would be suboptimal (Vanclay, 1991c). The species were grouped on the basis of 

pairwise tests between equations fitted to the individual species, with the more similar growth 

patterns being amalgamated (Vanclay, 1991a,c). A total of 41 groups were formed to fit the 

diameter increment functions, 11 for mortality functions, and five and nine groups, 

respectively, for predicting the probability and amount of recruitment. 

Diameter increment can be modelled in two ways. The more obvious approach is to predict 

the diameter increment (cm year-1) from tree and stand conditions using a model fitted by 

ordinary linear regression. An alternative is to fit a logistic function to predict the probability 

that a tree completes a specified amount of growth. Some advantages of the probabilistic 

approach include robust estimates despite outliers in the data, elimination of several 

subjective parameters in the model (e.g. cohort splitting), and ease of implementing as a 

compatible deterministic-stochastic model (Vanclay, 1991 b). 

  
Fig. 1. Diameter increment functions (under typical conditions: SQ=6; SBA-30; OBA= SBA ×((1- DBH)/140), and PS= 0).  
 



The following logistic equation (Fig. 1) was fitted using maximum likelihood estimation (e.g. 

for maple silkwood): 

  
where P is the probability that a tree completes a centimetre of growth within that year (i.e. 

grows from less than x to greater than or equal to x cm diameter, where x is an integer number 

of centimetres), DBH is tree diameter (cm), SQ is site quality (Vanclay, 1989b), SBA is stand 

basal area (m2 ha-1), OBA is overtopping basal topping area (m2 ha-1) defined as the basal area 

of stems whose diameter exceeds that of the subject tree, PS is a binary (0, 1) variable which, 

for this species, takes the value 1 if the plot is located on soils derived from recent alluvial, 

volcanic or granitic parent materials, and 0 for soils derived from sedimentary or 

metamorphic parent materials, DBH0 is the initial diameter, DBHn is the final diameter, n is 

the number of years, and Int rounds down to an integer value. 

 

Mortality 

 

The groups formed for predicting diameter increment do not provide a good basis for 

predicting mortality, so an independent grouping was made. A similar analysis of mortality 

patterns led to the formation of 11 groups for the prediction of mortality (Vanclay, 1991 c). 

The resulting equations predict the probability of any tree dying in any year, given its species 

and size, and the site quality and basal area (e.g. for maple silkwood): 

  
where P is the annual probability that any tree dies, DBH is tree diameter (cm dbhob), RS is 

relative size expressed as basal area of larger trees divided by total basal area (i.e. 0 is 

dominant, 1 is suppressed), SQ is site quality as measured by growth index, and BA is stand 

basal area (m2 ha-1). Zero parameters indicate that the variable was not significant for this 

species, but is used to predict the mortality for other species. 

 

Deterioration 

 

Not all the trees assessed as merchantable at the time of inventory will remain merchantable 

until harvested; some will deteriorate and become unmerchantable. Although the annual 

amount of deterioration is very small, it becomes significant over a 40 year cutting cycle, and 

should be accounted for in the growth model and yield forecasts. An analysis of 44 000 

observations on the merchantability of individual trees indicated that deterioration could be 

predicted from tree size, stand basal area, time since logging and soil type (Vanclay, 1991d) 

(e.g. maple silkwood and other durable species): 

  

where P is the annual probability that a merchantable tree survives as merchantable (i.e. does 

not become unmerchantable), BA is stand basal area (m2 ha-1) exceeding 10 cm dbh, DBH is 

dbh (cm), and CG takes the value 1 for soils derived from coarse granites and 0 otherwise. 

The n year probability of remaining merchantable may be computed as Pn, and the probability 

of becoming unmerchantable as 1-Pn. 

Regeneration 

One of the most difficult aspects of modelling forest growth and yield is the forecasting of 

regeneration. Because of high mortality amongst seedlings, difficulty of identification and 

high cost of measurement, inventory data usually only assess the larger trees (those exceeding 

10 cm dbh), and the growth model simulates only the growth of this fraction. It is possible to 

model the growth of smaller stems, but data are scarce and this would add unnecessary com-



plexity to the model. Thus the present model predicts the recruitment of stems at 10 cm dbh 

(i.e. those stems attaining 10 cm dbh or more in any year). 

In contrast to the relatively steady growth of individual trees, regeneration tends to be 

sporadic, with little or no regeneration for several years, and often large amounts in those 

years in which it does occur. Such data violate assumptions inherent in regression analysis. To 

overcome these problems, it is expedient to adopt a two-stage approach. The first stage 

predicts the probability that any recruitment occurs, and the second stage predicts the amount 

given that some is known to occur. 

These predictions are made independently for each species. The permanent sample plot 

database provided sufficient data to enable the analysis of recruitment of 100 species which 

were grouped into five groups for the prediction of probability, and nine groups for the 

prediction of amount of regeneration. The probability of recruitment was predicted as (e.g. for 

maple silkwood) 

  
where P is the annual probability that any recruitment occurs, BA is the stand basal area 

(m2 ha-1 of trees greater than 10 cm dbh). PRES is a binomial variable which takes the value 1 

if that species (maple silkwood) is present in the existing (10+ cm dbh) stand and 0 otherwise, 

TR is the treatment response (TR = tet/9 where t is years since last silvicultural treatment), and 

SOIL is a binary variable which takes the value 1 on soils derived from basic volcanic and 

coarse granite parent materials, and 0 otherwise. The treatment response term (TR) provides 

for a maximum response 9 years after silvicultural treatment. 

The amount of recruitment, given that it was known to occur, was predicted as (e.g. for 

maple silkwood): 
Log(N)=6.065-0.5803×Log(BA)+1.845×Log(RNO+0.2) + 0.09969×SQ- 0.3166×SOIL 

where N is the expected number of recruits (stems ha-1 year-1) given that recruitment of that 

species is known to occur, BA is stand basal area, RNO is relative number of trees (10 + cm 

dbh) of that species within the plot, SQ is site quality estimated using Vanclay's (1989b) 

growth index, and SOIL is a binary (0, 1) variable which takes the value 1 on alluvial and 

fine-grained (‘Tully’) granite soils and 0 elsewhere. 

 

Harvesting model 

Prior to logging, trees thought capable of producing a merchantable log are marked for 

removal in accordance with Forest Service guidelines (Preston and Vanclay, 1988). When 

felled, some stems reveal defects not evident when the tree was standing. Depending on the 

amount of this defect, the log may be classified as compulsory or non-compulsory. In 

addition, some species are non-compulsory. As only compulsory timber is debited to the 

sawmill allocation, the sustained yield is calculated for compulsory timber only. The har-

vesting model therefore comprises three essential components: the logging rule which 

indicates stems to be removed in logging, an allowance to predict the compulsory proportion 

of the logged stems, and a damage function which predicts mortality caused by felling and 

extraction operations. 

Table 3 Harvest groups 

Tree-marking class Typical species 
 

Cutting 

diameter 

Retention 

diameter 

A-1 Endriandra palmerstonii Queensland walnut 100 100 
A-2 Flindersia brayleyana Queensland maple 80 100 
A-3 Flindersia bourjotiana Silver ash 70 90 
B Argyrondendron peralatum Red tulip oak 70 90 
C Beilschmiedia bancroftii Yellow walnut 60 80 

D-1 Sphalmium racemosum Buff silky oak 60 60 
D-2 Elaeocarpus sericopetalum Hard quandong 50 50 
HWD Eucalyptus torrelliana Cadaga 70 90 
Non-compulsory 

- 

Aleurites moluccana 
Non-commercial 

Candlenut - 

- 

- 

- 



 

To simulate harvesting, species were grouped into nine harvest groups as indictated by the 

tree-marking guidelines (Table 3). Two diameters may influence whether a tree is selected for 

harvesting. Trees smaller than the cutting diameter may be removed only if they exceed 40 

cm diameter and can be expected to die prior to the next logging. Stems above the cutting 

diameter and up to the retention diameter will generally be removed unless they have 

exceptional form and vigour. Stems exceeding the retention diameter are marked for logging, 

unless required as a seed tree. 

Inventory data included an assessment of whether each tree would be logged or retained in 

harvesting (visual thinning), and were used to develop a prediction equation for tree marking. 

Logistic regression using the method of maximum likelihood was used to derive equations for 

each group (Vanclay, 1989c). The probability that a tree would be marked is predicted from 

its diameter and the time since last logging: 

P= ( 1 +e-(-5.530+0.05192×DBH-19.30/TSL+6.407×RL))-1 

where P is the probability of a tree being marked for logging, DBH is tree diameter (cm dbh), 

TSL is the time since last logging (years) for logged stands (provided it does not exceed 38), 

and takes the value 38 for virgin stands, RL is a binary variable which takes the value 1 if the 

dbh of the tree exceeds the retention limit (Table 3) and 0 otherwise. 

Prediction functions for defect and logging damage were developed from a series of 

logging damage studies on nine rainforest sites sampled before and after logging. The 

probability that a tree marked for logging will prove, after felling, to be so defective as to 

render it non-compulsory, can be predicted from its size. The resulting equations predict the 

frequency of apparently merchantable trees of compulsory species failing to yield a 

compulsory log: 

P= ( 1 +e-(-1.565-0.0129×DBH))-1 

where P is the probability that a tree fails to yield a compulsory log, and DBH is diameter (cm 

dbh) . 

The incidence of damage depends on the topographic slope of the site, and the proportion 

of the stand basal area removed in logging. Equations predict the probability that a tree will 

be destroyed in logging from the basal area removed, the slope, and the size of the residual 

trees. The resulting equation predicts the probability that a tree will be destroyed by logging: 

P= ( 1 +e-(-3.990+9.689×RBA+0.05648×SLOPE- 0.05958×DBH))-1 

where P is the probability that a tree will be destroyed, DBH is diameter (cm dbh), SLOPE is 

topographic slope (degrees) and RBA is the ratio of basal area logged to the initial stand basal 

area. 

Reliable rainforest volume equations are available in the form of two-way equations which 

predict log volume from tree diameter and log length. However, since forecasting future log 

lengths is unnecessarily complex and inaccurate, one-way equations predicting log volume 

from diameter are required. The volume predicted is gross log volume, comprising the under-

bark volume of logs after defective sections have been trimmed off, but including any internal 

defects within the log (pipe, etc). Data were obtained from many logging operations over 

several years, and comprise dbh measurements for each tree and log length and centre 

diameters for each log in each tree. Log volumes were estimated using Huber's formula, and 

equations for individual species and species groups were derived using linear regression 

(Henry, 1989) ( e.g. for maple silkwood) : 

V= -0.66106+8.96955 ×A 

where V is the total log volume per tree (m3) and A is the sectional area (m2) of the tree at 

breast height. 

Yield forecasts 

The sustained yield may be estimated using any of several approaches which vary in 

technical complexity and in assumptions made. Perhaps the most simplistic estimate can be 

derived from the yields obtained in logging, dividing this by the nominal cutting cycle (40 

years) and multiplying by the nett productive area. An estimate of logging yields may be 



derived from the inventory data, but it is essential to select only appropriate plots. Of the 518 

plots, only 89 were last logged prior to 1955 and were ‘visually thinned’ at time of inventory. 

These plots indicate that a yield of 24 m3 ha-1 (sampling error (s.e.) 8%) can be expected, 

suggesting a sustainable yield of 92 000 m3 year-1. Assumptions inherent in this approach are 

that the 40 year cycle is valid, that there will be no decline in growing stock or logging yields, 

and that these inventory data provide a reasonable sample of the area proposed for logging. 

An alternative simple approach, which overcomes the assumption of the 40 year logging 

cycle, uses the mean annual volume increment observed on permanent sample plots. 

Rainforest Research in North Queensland (Queensland Department of Forestry, 1983) reports 

that the volume increment of commercial species is 0.64 m3 ha-1 year-1 (s.e. 37%) derived 

from 30 plots, all previously logged and with a measurement history of 18 years. This sug-

gests a sustained yield of 98 000 m3 year-1. This estimate assumes that the sample is 

representative and that there will be no change in the growing stock over the area proposed 

for logging. 

However, both these approaches assume that the whole of the nett productive area will be 

logged in each logging cycle. Experience indicates that this need not be the case. In practice, 

some areas may not yield an economic yield at each cycle, and may be logged only during 

alternate cycles. To take account of this factor, a more sophisticated procedure for yield 

forecasting is required. 

 

Cutting cycle analysis 

 

In order to examine the stability of logging yields over time, it is necessary to use a growth 

model to simulate the growth of the forest and impact of harvesting over several logging 

cycles. One long established and widely used approach is known as cutting cycle analysis. In 

its most simple form, cutting cycle analysis may employ an average stand table (showing 

numbers of trees in broad size classes) which is updated by simple average growth rates in 

each class. In this form, cutting cycle analysis can be performed as a ‘back of an envelope' 

calculation. 

Computers enable many enhancements to this basic approach, but the underlying 

assumptions remain. It is assumed that the actual timing of logging on any part of the forest 

estate cannot be predicted, so the whole forest is ‘grown' for half a cutting cycle before a 

harvest is simulated. In effect this simulates a harvest over the whole estate at the mid-point 

of a cycle, rather than the harvest of small areas each year. The growth of the forest is then 

simulated for a full cycle (40 years in the present study) and the next harvest simulated at the 

mid-point of the second cycle. 

Thus cutting cycle analysis provides estimates of the long-term average harvest, for a given 

cutting cycle length and a given logging prescription. If the successive predicted yields do not 

decline, it may be assumed that that level of harvesting is sustainable. In the past, 

computational difficulties restricted such analyses to a few (often three) cutting cycles. If the 

successive predicted harvests were unequal, these were often averaged to estimate the 

sustainable yield, rather than the more desirable but more expensive solution involving 

iterative alterations to the cutting cycle and/or harvesting prescription. 

Present computer facilities enable several enhancements. Not only can calculations be 

iteratively repeated until successive harvest predictions are equal, but other important 

enhancements can also be made. Rather than simulating the growth of the overall average 

stand, the growth model can simulate the growth of the individual plots, and yields can be 

averaged after the harvest is simulated. This both ensures more reliable predictions and 

enables the calculation of standard errors. 

A further important enhancement is the ability to vary the area logged during each cycle 

according to the expected yields. Thus the present calculation omitted areas for which the 

estimated harvest was less than 5 m3 ha-1 during any cycle. This reflects the economic 

operating limits prevailing prior to the recent World Heritage listing of the Wet Tropics 

(Preston and Vanclay, 1988). These areas were omitted for one cycle only, and were again 

considered for harvesting during the next cycle. 



 
Table 4. Cutting cycle analysis results with 40 year cycle 

Year Estate average Characteristics of predicted harvest Cycle 

No.  Basal area 

40+ cm dbh 

Volume over 

cutting dbh 

Average yield 

(m
3
 ha

-1
) 

s.e. Annual cut 

(m
3
 year

-1
) 

 1 2010 36 30 19.2 3% 72558 

2 2050 36 26 15.6 2% 59191 

3 2090 38 28 16.4 2% 61313 

4 2130 39 27 16.6 3% 62035 

5 2170 40 25 16.8 2% 63217 

6 2210 41 30 19.9 2% 75640 

7 2250 41 35 23.4 2% 89713 

8 2290 41 38 25.7 2% 95667 

9 2330 41 38 25.5 2% 96937 

10 2370 40 38 25.9 2% 96857 

 

Table 4 illustrates the results of cutting cycle analysis using a 40 year cycle and a limiting 

yield of 5 m3 ha-1. As past logging has created a non-normal forest, it is not surprising that 

yields vary over time. Average annual yields remain relatively stable, and increase towards 

the end of the simulation. The sampling error (s.e.) reflects the error due to sampling (i.e. 

inventory), and takes no account of prediction errors (i.e. volume equations and growth pre-

dictions) which will initially be negligible but which increase with the duration of simulation. 

The sampling errors suggest that the logged forest may become more uniform. It should be 

noted that this reflects within-stratum uniformity with respect to loggable volume. It does not 

necessarily reflect species diversity or the characteristics of the unlogged fragments of forest 

throughout the timber production. In practice, the patchwork effect of logging would tend to 

maintain the overall diversity. 

The cutting cycle analysis indicates that selection logging could have been sustained for an 

extended period. As the smallest harvest of 59 191 m3 is predicted in cycle 2 (it appears that 

the allowable cut of 60 000 m3 could have been sustained. However, this method does not 

provide a good basis for determining a non-declining even-flow harvest, because of several 

deficiencies. 

The major deficiency with the cutting cycle analysis is that it examines only the long-term 

average growth, and not the short-term consequences. This is significant for a resource such 

as the rainforests of north Queensland, where until recently, harvests have been drawn 

primarily from previously unlogged stands with large trees and high standing volumes. In 

such a situation, it may well be that the short-term implications are more serious than the 

long-term implications of a particular harvesting plan on the resource. This weakness is 

exacerbated by the half cycle (i.e. 20 year) morotorium implicit in the method (i.e. first 

harvest simulated in the year 2010). A more sensitive approach to modelling harvesting 

known as yield scheduling enables the examination of this situation. 

 

Yield scheduling 

Yield scheduling attempts to simulate the growth of the forest, yields and impacts of 

harvesting, and the actual sequence of logging operations across the resource. Thus the 

resource is stratified into Management Units, reflecting the size of typical sale areas and 

topographic and operational considerations. Each management unit is further stratified into 

homogeneous subunits, each fairly uniform with respect to growing conditions and logging 

history. The present study employed 149 management units each of about 1000 ha (range 

200-6000 ha). Each management unit was stratified into about four subunits giving a total of 

568 subunits with an average area of around 270 ha. 



 

Inventory data are obtained for each subunit. In many cases, recent inventory data were 

available for each subunit. However, data were unavailable for some subunits, and for these, 

plots were ‘borrowed’ from other subunits which exhibited similar soil, climate and logging 

history. When plots were borrowed for a subunit, one plot from each of several similar 

subunits was used to minimise any possible effects of selection bias. Selection was automated 

to eliminate subjective bias, and preference was given to plots with the closest physical 

proximity to the unsampled subunit. Some 518 inventory plots were available. These plots, 

supplemented by borrowed plots for unsampled subunits, provided 1288 samples for use in 

the simulation study, and ensured a minimum of two samples in each subunit. 

Yield scheduling ranks management units according to pre-selected criteria, chooses the unit 

with the highest rank, and simulates harvesting of those subunits within this management unit 

which meet the specified economic criteria. The time taken to harvest this unit is determined, 

all management units are ‘grown’ accordingly, and the cycle is repeated until a sufficiently 

long forecast has been made. The present study ranked units according to the anticipated 

harvest (descending yield ha-1), so that of those areas proposed for logging, the more dense 

stands would be selected for harvesting first. This is silviculturally desirable, and reduces 

within-stand competition. Other options examined included ranking by total stand basal area, 

and by time since last logging, and these provided similar results. 

Yield scheduling enables the user to specify several economic and environmental conditions. 

The present simulation was restricted to ensure that at least 20 years elapsed between 

successive harvests on any management unit. It also ensured that the harvested yield from any 

subunit never fell below 5 m3 ha-1, that the average yield from any management unit always 

exceeded 12 m3 ha-1. These are realistic conditions to impose, assuming operational 

conditions prior to the recent listing of the area. Yield scheduling does not directly indicate 

the maximum sustainable yield, but rather indicates the outcome of harvesting some 

nominated amount. The maximum sustainable yield can be determined by iteratively 

examining several possibilities. 

Prior to the cessation of logging, the allowable cut had been set at 60 000 m3 year-1 (Preston 

and Vanclay, 1988). Table 5 examines the consequences of such a harvest simulated over a 

100 year period. The average stem size (ASV) of harvested trees can be maintained, but the 

harvest will become more uniform in size (Table 5: dbh distribution %< 60, 60-100, 100 + 

cm), and species prized for fine furniture and veneers (Table 5: veneer species) will comprise 

an increasing proportion of the harvest. Although large trees (exceeding 100 cm dbh) of 

commercial species will become increasingly scarce in the logged areas of the forest, large 

non-commercial trees will remain. Large trees of commercial species will also remain in the 

buffer strips and other protected areas. The dominant species comprising the harvest do not 

appear to vary greatly, and differences are probably due to the geographic rather than the 

temporal location of the harvest. 

This harvest will cause changes in the structure of the forest in those areas which are 

repeatedly harvested. There will be a substantial decrease in the stand basal area of trees 

(Table 5: estate average BA 40 + cm), and a small decrease in the total standing volume of big 

trees (Table 5: estate average volume over cutting limits defined in Table 3). The mean yield 

per harvest will decline to about 18 m3 ha-1, which may test the efficiency of some logging 

operations. The proportion of the nett productive area remaining loggable (i.e. satisfying the 

defined environmental, economic and operational constraints) at any point in time remains 

constant at about half the estate, and provides another indicator of sustainability. 

Table 5 also indicates the sampling error associated with the predicted yield. This should 

not be interpreted as the error associated with the estimate, but indicates only the inventory 

component of that error. When a new yield estimate is required, many foresters immediately 

commence new inventory and devote little attention to other components of the calculation. 

The sampling errors displayed in Table 5 indicate that the errors attributable to inventory are 

relatively small, and it may be inferred that other factors will have a greater influence on the 

overall precision. 

 



Table 5. Yield scheduling of 60 000 m
3
 year

-1
 for 100 years 

Estate average Mean harvest characteristics from 20 successive MUs Year Loggable 

area (%) BA 

40+ 

Vol over 

cutting dbh 

Predicted yield 

(m
3
 ha

-1
) s.e. (%) 

ASV 

(m
3
) 

Dbh dist. 

-60-100- 

% veneer 

species 

Major species code
1 

and % 

1998 63 36 26 34.4 10 3.48 6:72:22 11 RDT 15 WCW 14 

2005 64 35 24 24.8 5 3.24 8:70:23 28 NSO 11 YWN 9 

2014 59 34 23 22.2 8 2.97 9:77:14 30 NSO 12 RAL 

11 2020 57 33 23 19.9 4 2.91 10:81:9 18 RDT 10 YWN 8 

2027 53 32 22 18.8 4 2.89 12:83:6 23 YWN 9 RAL 9 

2033 51 32 22 18.6 7 2.87 11:84:5 22 QSA 11 NSO 9 

2040 51 31 23 18.0 5 2.94 10:82:7 19 RAL 11 RDT 9 

2047 50 30 23 18.4 4 2.92 10:85:5 27 QSA 13 RDT 

10 2054 50 30 23 17.8 4 3.04 10:84:6 21 RDT 14 RAL 

11 2058 48 29 23 18.0 6 2.90   9:88:3 23 BSL 17 RDT 

11 2063 50 28 23 18.0 6 2.92   9:86:5 21 QSA 11 RDT 9 

2068 52 28 23 18.4 6 2.96   8:89:3 25 QSA 14 RDT 

12 2078 52 27 23 18.3 4 3.18   8:87:5 21 QSA 17 RDT 13 

2084 54 26 23 18.7 5 3.03   9:87:4 21 QSA 14 RDT 

12 2089 54 25 22 18.9 6 3.19   7:88:5 23 RDT 15 QSA 

14 2096 54 24 22 18.9 6 3.28   7:89:4 31 QSA 17 BSL 10 

2101 53 24 21 18.8 5 3.42   8:87:6 33 RDT 15 QSA 

14 1. BSL, brown salwood: Acacia aulacocarpa; NSO, northern silky oak: Cardwellia sublimis; QSA, silver ash: Flindersia 

bourjotiana; RAL, rose alder: Caldcluvia australiensis; RDT, red tulip oak: Argyrodendron peralatum; WCW, white 

cheesewood: Alstonia scholaris; YWN, yellow walnut: Beilschmiedia bancroftii. 

One major advantage of yield scheduling is that it provides location-specific yield estimates 

and allows comparisons between predicted and realised yields. It is unlikely that estimates for 

any individual management unit would be exact but discrepancies should be small when 

averaged over several management units. Large discrepancies can be detected easily, and are 

indicative of bias in the forecasting system. Such errors can readily be traced to one of the 

components of the system: area estimates, current inventory, growth model, harvesting model, 

or volume equations. Such a system facilitates detection of errors and enables iterative 

refinement. 

Sensitivity analyses indicated that yield scheduling estimates beyond 200 years are highly 

sensitive to small changes in the prediction of recruitment, more so than the cutting cycle 

analysis results. As the present growth model has not yet been formally validated with 

independent data, simulations are reported only for the first 100 years. Accordingly, these 

results should be considered indicative rather than definitive. The prediction of regeneration 

and recruitment remains a fertile area for further research. 

The model is not intended to allow a detailed ecological forecast of species dynamics, and 

no predictions on non-commercial species are made. Other models have been formulated for 

such studies (e.g. Doyle, 1981), but are unsuited to timber yield forecasting. However, the 

present study does not attempt to determine the maximum yield under any regime, but 

examines yields derived from the application of the existing harvesting guidelines (Preston 

and Vanclay, 1988) which embrace sound environmental principles. 

 

Discussion 

 

These yield forecasts differ from previous calculations because of the additional data which 

have become available and because of the more sophisticated techniques employed. 

Specifically, the areas proposed for logging altered in response to recent land use planning 

studies in the region; GIS enabled better stratification and more precise area estimates; 

additional inventory data and a more objective method of site assessment were employed; the 

revised growth model retained the species identities of all trees; the deterioration of individual 

trees was modelled; a dynamic harvesting model enabled better predictions of removals, 



defect and logging damage; new species-specific volume equations were used. Thus the 

present yield estimates are more reliable than previous estimates. 

It is not the author’s intention to suggest that timber harvesting should be re-commenced 

within the Wet Tropics World Heritage Area in north Queensland. Rather, it is the intention 

of the present study, to illustrate the integration and practical application of GIS, field 

inventory data and a dynamic growth model to estimate short- and long-term timber yields, to 

indicate management alternatives and illustrate implications. There is no substitute for long 

computer simulations in estimating the sustainable yield. Whilst more subjective data remain 

an important check on simulation results, the expectation from visually thinned inventory data 

using an assumed logging cycle can be quite misleading (e.g. 92 000 versus 60 000 m3 year-1). 

Similarly, estimates of periodic annual volume increment from permanent sample plots can be 

misleading (e.g. 98 000 m3 year-1) unless weighted for site productivity and species 

composition to adequately represent the whole estate. 

The popular method of cutting cycle analysis may give a reasonable indication of 

sustainable yields, but only if results are averaged over several cycles. 

However, it too gives a biased estimate, presumably because of the ‘head start’ the resource 

gets during the first half cycle with no simulated logging. This head start consistently results 

in higher yields in the first cycle, which bias estimates, especially when prepared from 

simulations over few cycles (Vanclay and Preston, 1989). Yield scheduling is better able to 

indicate the shortto medium-term consequences of harvesting a given allowable cut. The 

longterm consequences remain dependent upon the quality of the data, and of the growth 

model employed. 

Conclusion 

The growth model employed in these studies has not been formally validated, so the results 

should be taken as indicative rather than definitive. Nonetheless, the model serves to illustrate 

discrepancies between several alternatives for estimating sustainable yields, and the 

deficiencies inherent in some methods have been highlighted. The approach of yield 

scheduling may be the best alternative, particularly as it provides location-specific yield esti-

mates and invites comparisons between predicted and realised yields. 
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