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Fig. 14. Changes in the chemical composition of shallow groundwater at Shark Creek backswamp in relation to
distance from the drain, before and after periods of floodgate opening. Ratios are based on molar concentrations.
Note: The floodgate opening size was restricted and no overtopping of the backswamp surface occurred during the
opening periods.

of evapotranspiration, both encourage a higher water table and thus effluent trending
gradients. While the higher energy deposition environment at this site associated with
proximity to the coastal barrier led to the sub-sediments being coarse textured, the lack of
structure and presence of some fines resulted in relatively low—moderate K, values, further
limiting saltwater ingress. A further significant feature of this site isits proximity and exposure
to an ongoing tidal signal from the nearby tidal channel. The shallow groundwater at this site
was already being influenced by a tidal signal prior to floodgate opening and thus was more
likely to be in a state of partial dynamic equilibrium with tidal influences.

In contrast, floodgate opening at Shark Creek backswamp caused extensive and rapid
lateral transport of solutes from the drain, as well as substantial tidal forcing across aquifer.
While the ASS are fine textured, the sulfuric horizon exhibited a higher degree of structure
than the sub-sediments found at Romiaka and also contained an extensive macropore
network. This resulted in extremely high K, values, which according to a theoretical
comparison solely on the basis of texture, are approximately equivalent to what might be
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Fig. 15. Mean daily drain water pH values in relation to maximum daily groundwater gradients. pH values are the
24 h mean from the SDL at monitoring station A (source: Johnston et al., 2004b). Data shown is from periods when
the mean daily groundwater level (mean of M1-1 and M1-2) was below the ground surface, between December
2000 and March 2003. Influent groundwater gradients develop during dry periods. A: the difference between the
mean daily groundwater level and the minimum daily water level at drain monitoring station B, assuming a
horizontal distance of 2 m.

expected from very coarse, well sorted clean sand or even gravels (Boulding, 1995). The
lower elevation of the backswamp surface at Shark Creek (below local high tide) and the
fact that long-term rainfall decreases with distance from the coast, both encourage a lower
waler table relative to local tides, and thus a greater probability of influent trending
groundwater gradients being creating during floodgate opening. The Shark Creek
backswamp was cut-off from tidal action by the formation of the natural distributary levee
at some point after sea level stabilisation following the last post-glacial marine
transgression (Lin and Melville, 1993). Despite the high hydraulic conductivity of the
backswamp sulfuric horizons, no tidal forcing 1s evident in the shallow groundwater solely
in response to the tidal signal in Shark Creek (i.e. independent of the floodgate opening
events). This behaviour points to the possible existence of semi-confining layers with lower
hydraulic conductivity existing between Shark Creek and the backswamp, perhaps beneath
the natural levee. Therefore, the re-introduction of a tidal signal into this backswamp via
artificial drains represents a significant change in the balance of groundwater inputs, as this
site 1s not in dynamic equilibrium with tidal influences.

5.1. Practical implications for opening floodgates

This study highlights the importance of adequate site assessment, particularly of soil
hydraulic properties, prior to opening floodgates. This is particularly relevant to ASS
backswamps where differences in soil hydraulic properties can be extreme. The hydraulic
conductivity of sulfuric horizons is known to be highly variable, owing to the unique
chemical and physical ripening processes that accompany drying and oxidation of sulfide
minerals, and the potential existence of macropores (Bouma et al., 1993). A compilation of
recent investigations in a variety of ASS backswamps on coastal floodplains in eastern
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Table 3
Comparing the hydraulic conductivity of the sulfuric horizons in some ASS backswamps located in coastal
floodplain environments in eastern Australia

Site/coastal river Ky range (m day "2 Test method Source

Pimpama/Pimpama ~0.4 Constant head Rassam et al. (2002)
McLeods Creek/Tweed ~A).8 Awuger hole White and Melville (1993)
Broughton Creek/Shoalhaven ~1-8 Falling head Blunden (2000)
Clybucca/Macleay 13-22 Pit bailing” Morris (unpublished data)
Rossglenn/Hastings ~14 Pit bailingh Aaso (unpublished data)
Everlasting Swamp/Clarence  9-17 Pit bailingh/uuge]‘ hole® Johnston et al. (2004a)
Tuckean Swamp/Richmond 52-178 Auger hole® Johnston (unpublished data)
Partridge Creek/Hastings 82-272 Pit bailing"/auger hole®  Johnston et al. (2003d)

* Note: This data is prt)\-ided to demonstrate the variability range of K, values encountered in coastal A's“i in
o A 2l ' chanld ha anmlbiad whan intarmratinag
\,tLWLLzII] ﬂLl‘LILLlII.I. \_,tI.LILILJ'I] ‘Ill.l'l.llu e tLIJ}Jll\,u ¥wino i llllbl}JlbLlllC
methods used, different sampling intensities and the high degree of spatial heterogeneity in hydraulic conductivity.
b .
Bouwer and Rice (1983).

¢ Bouwer and Rice (1976).
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Australia confirms this variability, with values ranging over three orders of magnitude
(Table 3). In unconsolidated floodplain sediments estimates of K, based on soil texture
alone may be highly misleading, as this does not account for variations in soil structure or
the existence of macropores. The vertical variation in soil hydraulic properties down the
profile relative to the local tidal range is also an important consideration. Previous work has
demonstrated the attenuating influence that semi-confining layers can have upon
groundwater flux and solute transport (Schultz and Ruppel, 2002). The potential existence
and effects of such layers at the drain bank face, due to chemical (i.e. Fe(Ill) clogging) or
physical (smearing, detrital acumulation) processes, requires further attention.

In theory it would be ideal to conduct sophisticated modeiiing prior to opening
floodgates at cach site in order to predict the likely extent of tidal forcing and lateral solute
movement in adjacent shallow groundwater. However, given the complexity of inputs

IPmde the costs associated with obit: nmno reliable data and the difficulties of accurs I[P]\;

modelling solute transport in macropore dominated systems, this is not likely to be a
practical broad scale solution. There are many thousands of kilometres of floodgated drains
on coastal floodplains in eastern Australia and floodgate opening is becoming increasingly
promoted and used as a water quality management strategy (Johnston et al., 2003b). An
alternative to predictive modelling may be a simple hazard ranking process. This could be
based on information that 1s either already available or relatively easy to obtain including:

ficld based assessment of sediment physical and hydraulic propertics;
land surface elevations relative to local tidal range;

local groundwater table ranges;

local climatic data (P, ET); and

before and after EM38 monitoring.

Such information, when combined with a cautionary, adaptive management approach,
may prove to be a simple and cost effective means of managing risks of saline seepage
associated with floodgate opening.
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