Rotational harvesting is a risky strategy for vulnerable marine animals

Steven W. Purcell
Southern Cross University

Sven Uthicke
Australian Institute of Marine Science

Maria Byrne
University of Sydney

Hampus Eriksson
University of Wollongong

Publication details
Postprint of: Purcell, SW, Uthicke, S, Byrne, M & Eriksson, H 2015, 'Rotational harvesting is a risky strategy for vulnerable marine animals', *Proceedings of the National Academy of Sciences of the United States of America*, vol. 112, no. 46.
Published version available from:
http://dx.doi.org/10.1073/pnas.1515074112
Rotational harvesting is a risky strategy for vulnerable marine animals

*Steven W. Purcell*¹, *Sven Uthicke*², *Maria Byrne*, *Hampus Eriksson*³⁴⁵

¹National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
²Australian Institute of Marine Science, Townsville, QLD 4810, Australia
³Schools of Medical Sciences and Biological Sciences, University of Sydney, NSW 2006, Australia
⁴WorldFish, Penang, Malaysia, and ⁵Australian National Centre for Ocean Resources and Security (ANCORS), University of Wollongong, Wollongong, NSW 2522, Australia

The authors declare no conflict of interest.

¹To whom correspondence should be addressed. E-mail: steven.w.purcell@gmail.com

Sea cucumber fisheries exemplify resource systems under intense exploitation pressure from lucrative Asian markets. Plagányi et al. (1) model the performance of rotational harvests of sea cucumbers on the Great Barrier Reef (GBR) and advocate it globally. We support their aim to evaluate management models but believe the tenets of the strategy are flawed, key model inputs bias the outputs, and inferences to other coastal fisheries are over-reaching. These shortcomings set a risky approach for managing coastal resources, especially those with vulnerable life-history traits such as sea cucumbers (2).

Rotational harvesting is an agricultural concept and the analogy for wild fisheries is off target. Marine animals are neither seeded nor have predictable production times nor grown in controlled conditions, and are subject to natural reproductive limitations and variability. Crop rotations either fallow the soil or vary cultured species, neither of which is applicable. The cited successful examples (fish, trochus) involve periodic (intermittent, undefined), not rotational (cyclical, defined), closures, and those species have life-history traits far more robust than sea cucumbers (2).

The authors model a multi-species fishery on the GBR concluding that the rotational zoning scheme (RZS) led to improvement in performance indicators. However, catches of white teatfish and prickly redfish, both threatened species (2), have declined under the present RZS in the fishery. The authors draw support from a Canadian sea cucumber fishery, yet recent surveys of fishers indicate declining stocks under that RZS (3).

Flawed assumptions and data inputs of the RZS model result in overly-short rotational cycles, which overestimate the resilience (ability of populations to recover from fishing) of slow-recovering species. For example, the authors’ assumption of constant annual harvests spread across all areas in every year if there was no RZS would be unlikely owing to fishing costs. Data on age at maximum length for most species are unsupported; e.g. 5-10 y for black
teatfish, contrary to empirical evidence of slow growth (4). Inferences about the rotational strategy are also unrealistic because the authors’ model includes burying blackfish (*Actinopyga spinea*), which comprises two-thirds of the overall fishery catch but most of that arises from non-RZS zones where that species is fished every year.

Plagányi et al. (1) advocate RZSs “for coastal and reef systems globally” without considering fundamental governance issues that predominate in such fisheries. Planning and coordinating fishing in rotational zones will be arduous in most tropical sea cucumber fisheries, which have open-access property rights, and weak technical and enforcement capacity of management institutions. The requisite “cap on total catch or effort per locality” has repeatedly proven unworkable in most sea cucumber fisheries globally. RZSs in low-income and developing countries will be costly and risky, especially for species threatened with extinction or with vulnerable life histories. Thus, the modelling remains theoretical and decoupled from real world application. We counter that conservative and adaptive management involving regulation of fishing effort, to curtail fishing to <5% of virgin biomass per annum, and shortlists of allowable species with robust populations (2, 5) would cost less and better safeguard biodiversity.