Title

Developing a regional diatom index for assessment and monitoring of freshwater streams in sub-tropical Australia

Document Type

Article

Publication details

Oeding, S & Taffs, KH 2017, 'Developing a regional diatom index for assessment and monitoring of freshwater streams in sub-tropical Australia', Ecological Indicators, vol. 80, pp. 135-146.

Published version available from:

https://dx.doi.org/10.1016/j.ecolind.2017.05.009

Peer Reviewed

Peer-Reviewed

Abstract

The use of borrowed indices to assess stream health has limitations and research suggests a need to develop more reliable regionally based indices that are sensitive to the relationship between taxa and environmental conditions. Implementing this is challenging in the Southern Hemisphere given the scarcity of diatom indices, specifically in sub-tropical areas. The purpose of this study was to develop a regionally based diatom index to assess freshwater lotic systems in sub-tropical eastern Australia and compare the results with borrowed indices to derive meaningful inferences on river health. A total of 119 epilithic diatom and water samples were collected during 2014–2015 from the Richmond River Catchment in Northern NSW Australia. Statistical analysis indicated that total phosphorus (TP) and total nitrogen (TN) were strong variables influencing the data set and subsequently TP was chosen as a nutrient proxy for the index. Analysis of diatoms resulted in TP sensitivity values (1–5) being assigned to 105 species with relative abundance of >1% in the data set. These species were used to calculate the Richmond River Diatom Index (RRDI) for 45 sites within the Catchment. The index effectively scored sites along the environmental gradient with sites in the upper catchment generally scoring lower (healthier) than the mid and lower catchment sites. The index compared positively with both the Diatom Species Index for Australian Rivers (DSIAR) (r = 0.76) and the Trophic Diatom Index (TDI) (r = 0.65). Further research is suggested to test the RRDI on independent sites in neighbouring catchments and develop class boundaries from the RRDI so that the index can be readily used by water managers to assess and monitor freshwater systems in sub-tropical Australia.