Document Type

Article

Publication details

Postprint of: Dunstan, RH, Sparkes, DL, Dascombe, BJ, Macdonald, MM, Evans, CA, Stevens, CJ, Crompton, MJ, Gottfries, J, Franks, J, Murphy, G, Wood, R & Roberts, TK 2016, 'Sweat facilitated amino acid losses in male athletes during exercise at 32-34 ˚C', Plos One, vol. 11, no. 12.

Article available on Open Access

Peer Reviewed

Peer-Reviewed

Abstract

Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32–34˚C and 20–30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as “faux” sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32–34˚C and 20–30% RH posed a potentially significant source of amino acid loss.

Find in your library

Share

COinS