Title

A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce

Document Type

Article

Publication details

Hammerbacher, A, Schmidt, A, Wadke, N, Wright, LP, Schneider, B, Bohlmann, J, Brand, WA, Fenning, TM, Gershenzon, J & Paetz, C 2013, 'A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce', Plant Physiology, vol. 162, no. 3, pp. 1324-1336.

Article available on Open Access


Peer Reviewed

Peer-Reviewed

Abstract

Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host’s chemical defenses that it is even able to use host phenolic compounds as its sole carbon source.