Proliferative and inhibitory activity of Siberian ginseng (Eleutherococcus senticosus) extract on cancer cell lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b

Document Type


Publication details

Cichello, SA, Yao, Q, Dowell, A, Leury, B & He, X 2015, 'Proliferative and inhibitory activity of Siberian ginseng (Eleutherococcus senticosus) extract on cancer cell lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b', Asian Pacific Journal of Cancer Prevention, vol. 16, no. 11, pp. 4781-4786.

Published version available from:



Siberian ginseng (Eleutherococcus senticosus) is used primarily as an adaptogen herb and also for its immune stimulant properties in Western herbal medicine. Another closely related species used in East Asian medicine systems i.e. Kampo, TCM (Manchuria, Korea, Japan and Ainu of Hokkaido) and also called Siberian ginseng (Acanthopanax senticosus) also displays immune-stimulant and anti-cancer properties. These may affect tumour growth and also provide an anti-fatigue effect for cancer patients, in particular for those suffering from lung cancer. There is some evidence that a carbohydrate in Siberian ginseng may possess not only immune stimulatory but also anti-tumour effects and also display other various anti-cancer properties. Our study aimed to determine the inhibitory and also proliferative effects of a methanol plant extract of Siberan ginseng (E. senticosus) on various cancer and normal cell lines including: A-549 (small cell lung cancer), XWLC-05 (Yunnan lung cancer cell line), CNE (human nasopharyngeal carcinoma cell line), HCT-116 (human colon cancer) and Beas-2b (human lung epithelial). These cell lines were treated with an extract from E. senticosus that was evaporated and reconstituted in DMSO. Treatment of A-549 (small cell lung cancer) cells with E. senticosus methanolic extract showed a concentration-dependent inhibitory trend from 12.5 - 50µg/mL, and then a plateau, whereas at 12.5 and 25 µg/mL, there is a slight growth suppression in QBC-939 cells, but then a steady suppression from 50, 100 and 200µg/mL. Further, in XWLC-05 (Yunnan lung cancer cell line), E. senticosus methanolic extract displayed an inhibitory effect which plateaued with increasing dosage. Next, in CNE (human nasopharyngeal carcinoma cell line) there was a dose dependent proliferative response, whereas in Beas-2 (human lung epithelial cell line), an inhibitory effect. Finally in colon cancer cell line (HCT-116) we observed an initially weak inhibitory effect and then plateau.