Mixed-species plantation of Eucalyptus with nitrogen fixing trees: a review

David I. Forrester
The University of Melbourne

Jürgen Bauhus
University of Freiburg

Annette L. Cowie
NSW Department of Primary Industries

Jerome K. Vanclay
Southern Cross University

Publication details
Publisher's version of article available at http://dx.doi.org/10.1016/j.foreco.2006.05.012
Mixed-species plantations of *Eucalyptus* with nitrogen fixing trees: a review

doi:10.1016/j.foreco.2006.05.012

David I. Forrester\(^1,2,3^*\), Jürgen Bauhus\(^2,4\), Annette L. Cowie\(^2,5\), Jerome K. Vanclay\(^6\)

\(^1\) School of Resources, Environment and Society, The Australian National University, Canberra, A.C.T. 0200, Australia

\(^2\) Cooperative Research Centre for Greenhouse Accounting, GPO Box 475, Canberra A.C.T. 2601, Australia

\(^3\) Present address: School of Forest and Ecosystem Science, The University of Melbourne, PO Box 137, Heidelberg, V.I.C. 3084, Australia

\(^4\) Institute of Silviculture, University of Freiburg, Tennenbacherstr. 4, 79106 Freiburg, Germany.

\(^5\) NSW Department of Primary Industries, PO Box 100, Beecroft, N.S.W. 2119, Australia.

\(^6\) School of Environmental Science & Management, Southern Cross University, PO Box 157, Lismore, N.S.W. 2480, Australia

* Corresponding author. Tel.: +61-3-9450 8670, Fax: +61-3-9450 8644. *E-mail address:*

davidif@unimelb.edu.au
ABSTRACT

Mixed-species plantations of *Eucalyptus* with a nitrogen (N$_2$) fixing species have the potential to increase productivity while maintaining soil fertility, compared to *Eucalyptus* monocultures. However, it is difficult to predict combinations of species and sites that will lead to these benefits. We review the processes and interactions occurring in mixed plantations, and the influence of species or site attributes, to aid the selection of successful combinations of species and sites.

Successful mixtures, where productivity is increased over that of monocultures, have often developed stratified canopies, such that the less shade-tolerant species outtops the more shade-tolerant species. Successful mixtures also have significantly higher rates of N and P cycling than *Eucalyptus* monocultures. It is therefore important to select N$_2$-fixing species with readily decomposable litter and high rates of nutrient cycling, as well as high rates of N$_2$-fixation. While the dynamics of N$_2$-fixation in tree stands are not well understood, it appears as though eucalypts can benefit from fixed N as early as the first or second year following plantation establishment. A meta-analysis of 18 published studies revealed several trials in which mixtures were significantly (P<0.001) more productive than monocultures, and no instances in which mixtures were less productive than monocultures. Regression analyses of such data were more informative than indices of relative yield, and were more informative in trials that contrasted four or more different species compositions. Thus replacement series examining compositions of 100:0, 67:33, 33:67, and 0:100 were more informative than minimalist 100:0, 50:50 and 0:100 series.

1. Introduction

Eucalyptus is one of the most widely used genera in global commercial plantation timber industries (James and Del Lungo, 2005). These plantations are generally monospecific and have been managed successfully and sustainably for many years. Nevertheless, concerns have been raised about the costs of fertilisers, reduced biodiversity, and productivity losses from pests and disease
Mixed-species plantations containing a eucalypt and a nitrogen (N\textsubscript{2}) fixing species have the potential to address some of these concerns and improve nutrient cycling (Binkley et al., 1992; Forrester et al., 2005b), soil fertility (Montagnini, 2000), biomass production (Binkley et al., 2003b; Forrester et al., 2004) and carbon sequestration (Kaye et al., 2000; Resh et al., 2002; Forrester et al., 2006a) while providing other benefits through a diversification of products (Montagnini et al., 1995; Khanna, 1997; Montagnini, 2000), improved risk management and protection from pests and diseases (Ewel, 1986; FAO, 1992; Montagnini, 2000). Mixtures can also be used as a silvicultural system for growing high quality timber (Ewel, 1986; Keenan et al., 1995; Montagnini et al., 1995; DeBell et al., 1997; Medhurst et al., 2003).

The design and silviculture of a mixture depends on the specific objectives. For example, the admixed N\textsubscript{2}-fixing species may be used to produce a wood product or simply to increase N availability, and the aim of the admixture may be to maximise biomass, volume, or structural diversity, or to improve tree form and wood quality. The wide range of design and silvicultural options available are beyond the scope of this review (see Haines and DeBell, 1980; FAO, 1992; Kelty and Cameron, 1995), however, the species and site attributes that should be considered when managing the processes and interactions in mixtures will be similar for most of these objectives. Knowledge about these factors will greatly improve the probability of success. Previous reviews have examined the growth and interactions that occur in agroforestry systems (Rao et al., 1998; García-Barrios and Ong, 2004; Jose et al., 2004; Thevathasan and Gordon, 2004), in mixed stands of trees in general (Cannell et al., 1992; FAO, 1992; Kelty, 1992, 2006), mixtures containing a N\textsubscript{2}-fixing species (Binkley, 1992; Sanginga et al., 1995; Khanna, 1998) and the nutritional interactions in mixtures (Rothe and Binkley, 2001). However, a considerable amount of recent research has advanced our understanding of the interactions that occur in mixtures, particularly those containing Eucalyptus with a N\textsubscript{2}-fixing species. The aim of this review was (1) to examine the processes and interactions that affect the productivity in mixed-species stands containing Eucalyptus and a
nitrogen-fixing-species; (2) to identify the growth habits and physiological characteristics of tree species that allow an assessment of the likely interactions between species, and (3) to examine the effect of site factors (nitrogen, phosphorus and water) on these interactions and processes to enable the successful matching of species and sites.

2. Interactions in mixed stands

To improve the productivity in mixed plantations, there are three main processes that need to be considered: competition, competitive reduction and facilitation (Vandermeer, 1989; Kelty, 1992). Competition occurs when two or more plants or populations interact such that one exerts a negative effect (growth or mortality) on the other (Vandermeer, 1989). Competitive reduction, also known as complementarity or the competitive production principle, occurs when interspecific competition in the mixture is less than intraspecific competition in the monocultures (Vandermeer, 1989; Kelty and Cameron, 1995). This results from a differentiation in resource (light, water or nutrients) requirements (Kelty and Cameron, 1995) leading to a more complete use of site resources.

Facilitation, also known as the facilitative production principle, occurs when one species has a positive effect on another (Vandermeer, 1989). Mixtures will out-yield monocultures, when the positive interactions of facilitation and competitive reduction dominate the competitive interactions.

3. Competition

3.1 Symmetry of competition in mixed stands

The way in which competition is distributed in a stand of trees depends on the resources for which plants are competing (Weiner, 1985; Hara, 1986; Weiner, 1986, 1990). Competition for light is often asymmetrical because tall plants can shade small plants but not vice versa to the same extent. Competition for belowground resources, such as water and nutrients, is theoretically more symmetrical as the roots of smaller plants may take up the same amount of resource per unit root
surface area (Weiner, 1985, 1986; Kikuzawa and Umeki, 1996). Although variations in fine root
architecture, growth rates, distribution and mycorrhizal associations may also lead to asymmetrical
competition belowground. The degree of asymmetry depends on the resource for which plants are
competition leads to an increase in size inequality with time because small individuals lack the
resource and lag behind (Hara, 1986). The degree of asymmetry and resource differentiation is
likely to change with time depending on the resources that become most limiting during the
different stages of development. Asymmetric competition in a mixed-species plantation may lead
eventually to the suppression of one species.

3.2 Interspecific and intraspecific competition

The occurrence of both interspecific and intraspecific competition leads to more complex
interactions in mixtures than monocultures. What is commonly being measured as intra- and
interspecific competition is the net effect of all interactions between plants (which may have
positive or negative effects). It is theoretically possible that interactions occurring in mixtures can
lead to substitution (Figure 1a-b), reduced (Figure 1c) or increased yields (Figure 1d-e).

If intra- and interspecific competition are the same (or the density is too low for plants to interact)
then the average plant size and overall size inequality should be the same in mixture and
monoculture (Figure 1a). In this case it is just as beneficial to plant monocultures of each species.
Where the interspecific competition is greater than intraspecific competition for one species (B) and
vice versa for the other, the species receiving the greater share of resources (A) will be larger in
mixture than in monoculture, while the species receiving a lower supply of resources will be
correspondingly smaller (B) (Trenbath, 1974) (Figure 1b). This compensatory effect is often
observed in mixtures of herbaceous species (Trenbath, 1974).
Where interspecific competition is greater than intraspecific competition for both species, the average size of both species in mixture will be smaller than in monoculture (Figure 1c). When interspecific competition is lower than intraspecific competition for both species the average size of both species in a mixture will be greater than in a monoculture and the yield of mixtures will be greater than that of monocultures (Figure 1d). It is important to note that these outcomes depend on the yield-density functions of each species, as well as on the inter- and intra-specific competition (Harper, 1977). A typical yield-density function is shown in Figure 1e (for example, line B for species B), where the yield increases with increasing plant density until a maximum yield is reached. If neither species responds to the other, the yield of each species will follow its yield-density function and mixtures could be more or less productive than monocultures depending on their yield-density functions (Figure 1e). This situation is less likely to occur and requires that the availability of light, water and nutrient are not limited due to competition from the other species.

It is usually not possible to separate the effect of positive or negative interactions occurring in mixtures and it is likely that they are often interrelated. However, it is possible to answer certain research questions by carefully considering the design of the mixed-species experiment. There are several designs used for mixed-species experiments (Harper, 1977; Jolliffe, 2000; Freckleton and Watkinson, 2000; Vanclay, 2006), but the two most common types are the replacement series and additive series designs. In replacement series designs, the density of monospecific and mixed treatments is constant and the proportions of the two component species are varied (deWit, 1960). In additive series, the density of one species remains constant across the monocultures and mixtures while that of the other varies, such that mixtures have a higher density than monocultures (Harper, 1977). This latter design is often used to study the effects of weed species on crops planted at standard densities (Harper, 1977; Kelty, 1992).
Additive designs can be used to quantify interspecific competition, (Sackville Hamilton, 1994) and therefore the number of N$_2$-fixing trees that could be added to a given density of *Eucalyptus* to increase growth, or to avoid a reduction in growth rates. Replacement series can be used to determine whether inter- and intraspecific competition are equal or unequal (Sackville Hamilton, 1994) and therefore, whether the interspecific interactions have net positive or negative effects on the growth of either species in a mixture. Replacement series are often used when the productivity of both species is of interest. Designs that contain both replacement and additive series (such as addition series) can be used to examine the complete range of outcomes (Firbank and Watkinson, 1990; Kelty and Cameron, 1995). Alternatively, neighbourhood designs at the level of individual trees, both interspecific and intraspecific interactions can be examined, and such analyses have shown more complex trends than were evident from stand level analyses in the same trial (see (Boyden et al., 2005).

There are many indices used to describe the growth outcome of mixed-species stands in replacement series and all have advantages and disadvantages (Jolliffe, 2000; Williams and McCarthy, 2001). A frequently used index is the relative yield (RY).

\[
\text{RY of species } A = \frac{\text{yield of species } A \text{ in mixture}}{\text{yield of species } A \text{ in monoculture}} \quad \text{(Harper, 1977)}.
\]

It is important to note that this indicates the outcome of all interactions occurring in the stand, including both species interactions and the yield-density functions of either species (Harper, 1977). RY equal to the proportion of the given species in mixture indicates that, on average, trees were the same size in mixture as in monoculture. For example, in a 1:1 mixture an RY of 0.5 indicates that plants of that species were of the same average size in mixture and monoculture (Figure 1a). RY of more than 0.5 shows that the plants were bigger in mixture than monoculture (Figure 1d), and an
RY below 0.5 shows that plants were smaller in mixture than in monoculture (Figure 1c). Figure 2 shows the RY of 1:1 mixtures of *Eucalyptus* and N\textsubscript{2}-fixing trees in 19 mixtures. In some cases, the relative yield is divided by the proportion of the given species in mixture (Williams and McCarthy, 2001). This facilitates the comparison of treatments with different species proportions. That is, regardless of the species proportion, an RY\textsubscript{species proportion} of 1 means the trees were the same size in mixture as they were in monoculture.

4. Competitive reduction

Competitive reduction may occur spatially through the stratification of foliage or roots or temporally due to phenological differences. Generally competitive interactions between tree species are divided into two groups; aboveground competition for light and belowground competition for soil resources (Kelty, 1992). Above- and belowground interactions are unlikely to be independent of each other (Kelty, 1992). However, to simplify the discussion, both interactions are considered separately.

4.1 Canopy stratification – competition for light

Successful mixed-species plantations often have stratified canopies with a fast-growing and less shade-tolerant species forming the upper canopy and a more shade-tolerant species forming the lower canopy (Assmann, 1970; see studies 1, 7, 8-10 in Table 1 and Figure 3). This canopy stratification can lead to higher stand-level light capture and more efficient use of light in the upper canopy.

Shade-intolerant species such as many of the *Eucalyptus* genus (Bell and Williams, 1997) are capable of higher maximum rates of photosynthesis than more shade-tolerant species. Therefore more efficient use will be made of the higher light intensities in the upper canopy of a mixture than
in the upper canopy of a more shade-tolerant species monoculture. In contrast, shade-tolerant
species are capable of maintaining foliage at lower light intensities than less shade-tolerant species
because they have lower light compensation points (Kelty, 1992). Light compensation occurs at the
irradiance level where the net carbon exchange by a leaf is zero and rates of photosynthesis and
respiration balance (Lambers et al., 1998). Below this point there is insufficient light to compensate
for respiratory CO₂ release (Lambers et al., 1998). Shade-tolerant species therefore make more
efficient use of light at low levels (Vandermeer, 1989; Kelty, 1992) and increase the amount of light
intercepted compared to monocultures of the shade-intolerant species. For example, total light
interception (photosynthetically active radiation; PAR) was measured in mixtures of *Eucalyptus*
saligna with *Falcataria molucanna* and *E. globulus* with *Acacia mearnsii* (Trials 1 and 7 in Table
1; Binkley, 1992; Bauhus et al., 2004). In both studies, monocultures of the relatively shade-
intolerant *Eucalyptus* spp. intercepted less light (66% of PAR) than mixtures with, or monocultures
of the more shade-tolerant *F. molucanna* (87-92% of PAR) and *A. mearnsii* (73-78% of PAR).
Furthermore, Bauhus et al. (2004) suggested that the interception of diffuse and direct light might
be optimised in mixtures over the course of a day because mature foliage of *E. globulus* is vertically
oriented (James and Bell, 2000) while that of *A. mearnsii* is more horizontally oriented. This was
also shown in mixed stands of *E. nitens* and *A. dealbata* (Hunt, 1998; Hunt et al. 2006), which are
very closely related to *E. globulus* and *A. mearnsii*, respectively, and have similar crown
architecture and leaf morphologies. The light extinction coefficient, which measures the fraction of
incident photons absorbed per unit leaf area (Beadle, 1997), was significantly higher in mixtures
(0.65) than that normally occurring in eucalyptus monocultures (0.5) (Hunt, 1998; Hunt et al. 2006).
Therefore, the combination of a shade-tolerant and a taller and less shade-tolerant species will
increase light capture (compared to monocultures of less shade-tolerant species) and the efficiency
of the upper canopy (compared to monocultures of the more shade-tolerant species).
To survive in a mixed stand, shade-intolerant species need a competitive advantage to overtop the more shade tolerant species (Yoshida and Kamitani, 2000). In studies 5 and 11 in Table 1 and Figure 3, the shade-intolerant *Eucalyptus* species was not able to overtop the associated N₂-fixing species and grew smaller in mixtures than in monocultures. In contrast the *Eucalyptus* spp. in studies 1, 7, 8-10 in Table 1 and Figure 3 overtopped the associated species (although not always initially) and the productivity of mixtures was greater than that of monocultures. It is important to note that canopy stratification alone is probably not the only factor responsible for the success or failure of these mixed stands, but it is a key factor to ensure the coexistence of the species until the end of the rotation. Furthermore the relative influence of different interactions on stand growth (such as competitive reduction due to canopy stratification or facilitation due to N₂-fixation) can change with time as the stands develop (Forrester et al., 2004).

Desired differences in tree height and the avoidance of crown competition between species can result from more rapid early height growth of the shade-intolerant species, the advanced planting of the less shade-tolerant species (Harrington and Deal, 1981) or by modifying the planting pattern to create patches, where trees of one species are only subject to intraspecific competition (Kelty and Cameron, 1995). These differences in height growth can also be used to improve the form and wood quality of either species in the mixture. It has been argued that *Eucalyptus* trees require pruning of live branches to produce clear, solid wood products or that self-pruning must be promoted through high stand densities (Montagu et al., 2003). The shading of the *Eucalyptus* stems by the N₂-fixing trees may be more intense than the shade provided from other eucalypts, when mixtures are planted at the same density as monocultures (Bauhus et al., 2004). Thus self-pruning of eucalypts may be accelerated in mixtures without increasing stand density and thus planting costs. Where pruning of live branches is required, improvements in nitrogen nutrition (from N₂-fixation) may improve the ability of the *Eucalyptus* trees to rebuild their crowns after pruning. In other plantation systems, shading from *Eucalyptus* trees has been used to improve the form of
Acacia melanoxylon, which can grow large branches and develop a poor form in pure stands (Medhurst et al., 2003; Medhurst et al., 2006). However, in these mixtures the eucalypts are regarded as a temporary component that serve as a trainer species for the acacias to produce high-value timber.

Owing to the paucity of studies which have examined the growth dynamics of mixed plantations it is difficult to predict how a species will grow in a mixture (Forrester et al., 2004). Nevertheless, height-age curves of each species in monocultures (Fisher and Binkley, 2000) and information about each species’ relative shade tolerance should aid with species selection (Forrester et al., 2005a).

4.2 Root stratification – competition for nutrients and water

The potential reduction of below ground competition occurs through the physical or chemical stratification of roots. Chemical stratification can occur when co-occurring species employ different acquisition strategies to obtain nutrients. Such stratification may occur when different plant species are associated with different types of mycorrhizae (Ewel, 1986; Schulze et al., 1994). Detailed studies of mycorrhizal associations and soil N sources have not been carried out in mixtures containing *Eucalyptus* with N\(_2\)-fixing species. However, while *Eucalyptus* spp. (Gardina and Malajczuk, 1988; Bellei et al., 1992; Adjoud-Sadadou and Halli-Hargas, 2000) and *Acacia* spp. (McGee, 1986; Bellgard, 1991; Brundrett and Abbott, 1991; Reddell and Milnes, 1992) can both form symbioses with arbuscular mycorrhizal fungi, *Eucalyptus* also form ectomycorrhizal associations as they age (Gardina and Malajczuk, 1988; Bellei et al., 1992). Therefore chemical stratification may occur in mixed plantations of *Eucalyptus* and N\(_2\)-fixing species at certain stages of stand development when different mycorrhizal associations are formed.
Physical stratification occurs through differences in fine-root distribution that affect exploitation strategies. For example, vertical differentiation of fine roots was observed in a regrowth forest stand containing *Eucalyptus maculata*, *E. pilularis* and *Acacia mabellae* (Neave and Florence, 1994). *Eucalyptus maculata* had a greater fine-root biomass in the deeper soil layers than the associated species, leading to more effective nutrient acquisition in the lower soil layers and a greater competitive ability during times when surface soils dry out (Neave and Florence, 1994). Similarly Khanna (1997) found evidence of root stratification in a three-year-old *A. mearnsii*/*E. globulus* mixture such that *A. mearnsii* roots were mostly confined to the surface 10 cm while *E. globulus* roots generally occupied the deeper soil layers. However, a later study in the same trial by Bauhus et al. (2000) found that fine-root architecture and vertical distribution were similar for *A. mearnsii* and *E. globulus* in the top 0-30 cm when the stand was six years old. This suggests similar soil exploitation strategies and potentially strong competition for soil resources. On the basis of these two studies it cannot be ascertained whether these contrasting results are due to differences in methodology or represent a real disappearance of early root stratification when trees aged and both species explored the soil more fully.

However, while root stratification has been linked to increased production in several mixtures of herbaceous species (Trenbath, 1974), it has not been linked to increased productivity in tree stands. The studies above indicate that root stratification may enable the coexistence of different species on sites, where belowground resources are limiting.

5. Facilitation

Facilitation may occur directly, by the amelioration of harsh environmental conditions or through increased resource availability, or indirectly, via the elimination of potential competitors, the introduction of beneficial organisms (mycorrhizae and other soil microbes) or protection from
herbivores (Callaway, 1995). This section focuses on direct facilitation through improved nitrogen availability.

Often the primary objective of using N\textsubscript{2}-fixing species in mixed systems is to increase the N available to the main crop or companion species. Total N in the plant-soil system can be increased by atmospheric N\textsubscript{2}-fixation (Kelty, 1992; Kelty and Cameron, 1995). In addition, N availability can be increased by accelerating the rate of N cycling without an increase in total N levels in the plant-soil system (Kelty, 1992; Kelty and Cameron, 1995). Either way, N can be transferred between the N\textsubscript{2}-fixing species to the non-N\textsubscript{2}-fixing species via the decomposition of litter (such as foliage and fine-roots) and the subsequent mineralisation of organic N (including root exudates).

5.1 Nitrogen fixation

Nitrogen fixation can only be performed by certain strains of prokaryotic microbes (Fisher and Binkley, 2000). These microbes use the nitrogen fixing enzyme, nitrogenase, to reduce atmospheric N\textsubscript{2} to ammonia (NH\textsubscript{3}), which is a form that plants can utilise (Walker et al., 1983; Sprent, 1987).

\[8H^+ + N_2 + 8e^- \rightarrow 2NH_3 + H_2 \]

Many plants form symbiotic, mutualistic relationships with these prokaryotes, which receive carbohydrates and microaerobic environments and supply reduced N for use in amino acids, proteins and other biochemicals (Binkley and Giardina, 1997). Plants capable of forming such symbioses, such as legumes or actinorhizal plants, are sometimes used in agroforestry and forestry systems. Legumes such as *Acacia, Falcataria, Leucaena, Lupinus* and *Robinia* have symbiotic, mutualistic relationships with the bacteria genera *Rhizobium* and *Bradyrhizobium* (Binkley and Giardina, 1997; Fisher and Binkley, 2000). Actinorhizal species from genera such as *Alnus*,
Casuarina and *Ceanothus* are associated with the *Frankia* genus of actinomycetes (Benson and Silvester, 1993).

There are several methods for estimating rates of N₂-fixation in the field, depending on the type or location of the experiment and available resources (Shearer and Kohl, 1986). Common methods are N accretion, chronosequences, acetylene reduction assays and ^15^N methods (natural abundance or labelling) (these are described in detail in Silvester, 1983; Caldwell and Virginia, 1989; Fisher and Binkley, 2000).

5.1.1 Rates of N₂-fixation

Nitrogen input rates from symbiotic N₂-fixation in plant symbioses have been estimated to be less than 1 to more than 200 kg N ha\(^{-1}\) year\(^{-1}\), which may be about 10% to nearly 100% of the total N used by the host plant (Binkley, 1992; Binkley and Giardina, 1997; Khanna, 1998; Fisher and Binkley, 2000; May and Attiwill, 2003). Rates of N₂-fixation depend on the density, age and growth of the host plants, the degree of nodulation, the genetics of the host, mycorrhizae and N₂-fixing bacteria, and environmental factors that affect plant growth (see reviews by Danso et al., 1992; Sanginga et al., 1995; Binkley and Giardina, 1997; Fisher and Binkley, 2000; Brockwell et al., 2005).

The effect of soil P availability on N₂-fixation does not appear to have been measured in forests or plantations. In pot trials rates of N₂-fixation and nitrogenase activity of *Acacia* or *Falcataria* seedlings increased with increasing amounts of P fertiliser (Dixon and Wheeler, 1983; Sun et al., 1992; Binkley et al., 2003a), whereas there was little to no effect of P fertiliser on *L. leucocephala* seedlings (Sanginga et al., 1991) or *Casuarina equisetifolia* seedlings (Sanginga et al., 1989b).
Sanginga et al. (1991) suggested that P affected N$_2$-fixation through its effect on plant growth rather than its effect on the N$_2$-fixation process directly.

Nitrogen-fixing trees themselves can influence soil P availability, however, the effects vary with species and sites. For example, in mixtures of *F. moluccana* and *E. saligna* soil P availability declined with increasing proportions of *F. moluccana* (Study 7 in Table 1) (Binkley et al., 2000; Kaye et al., 2000). However, aboveground biomass, P in aboveground biomass, and P cycling through litterfall increased with increasing proportions of *F. moluccana* (Binkley et al., 1992; Kaye et al., 2000). The higher P uptake by *F. moluccana* may have been due to associations with mycorrhizae (Binkley and Ryan, 1998; Binkley et al., 2000) and the use of P that was unavailable to *E. saligna* (Binkley et al. 2000). Similarly, P in foliage biomass and litterfall was significantly higher in stands containing *A. mearnsii* than in *E. globulus* monocultures (Forrester et al., 2005b), although soil P was not significantly different in mixtures or monocultures of *E. globulus* and *A. mearnsii* (Pares, 2002).

There is no clear trend to describe the effect of N availability on N$_2$-fixation or the proportion of N derived from the atmosphere (N$_{dfa}$) by trees (Sprent, 1994; Binkley and Giardina, 1997). Several studies have observed declines in the total N$_2$ fixed or N$_{dfa}$ with increasing N availability (Sanginga et al., 1989a; Baker et al., 1994; Dommergues, 1995; Binkley et al., 2003a). However, in other studies it appeared that N fertiliser increased N$_2$-fixation by *Alnus* species (Ingestad, 1980; Binkley et al., 1994).

The effect of soil moisture, pH and other soil physical and chemical properties on N$_2$-fixation are complex and are beyond the scope of this review. The factors that affect N$_2$-fixation and the effect of N$_2$-fixing plants on soil chemical and physical properties are discussed by Danso et al. (1992) and Binkley and Giardina (1997).
5.1.2 Dynamics of N_2-fixation

Little work has been done on the effects of tree age and N accretion over time on N_2-fixation and N_{dfa}. The 15N labelling method was used to measure the total N_2 fixed and N_{dfa} by the N-fixing $Leucaena leucocephala$ and $Casuarina equisetifolia$ (Parrotta et al., 1996). At year one the N_{dfa} by $L. leucocephala$ was 98% and this declined to 38% by year 3.5. The N_{dfa} by $C. equisetifolia$ fluctuated between 43 to 62% between years 1 and 3.5. The N_2 fixed, however, did not decline with age, such that the N_2 fixed over 3.5 years was similar for both species, at 73 and 74 kg ha$^{-1}$ yr$^{-1}$ for $C. equisetifolia$ and $L. leucocephala$ respectively. The reduction in N_{dfa} by $L. leucocephala$ may have resulted from the cycling of N through litterfall (more than double that of $C. equisetifolia$) and decomposition (Parrotta et al., 1996) since increasing N availability has been found to reduce N_{dfa} in some studies as explained above.

Using the natural abundance method and several understorey species as non-N_2-fixing reference plants, Van Kessel et al. (1994) found that $L. leucocephala$ fixed about 74% of its N after the first year. However, by years four and six the δ^{15}N values of the $L. leucocephala$ and understorey were similar and N_{dfa} could not be determined (Van Kessel et al., 1994), which may result from a reduction in N_2-fixation in response to increased N availability (Dommergues, 1995).

5.1.3 Use of fixed N by non-N_2-fixing species

Nitrogen availability may be increased for non-N_2-fixing species growing in mixture with a N_2-fixing species in several ways: 1) fixed N may become available to non-N_2-fixing species after plant and microbe tissues die and decompose, releasing N that cycles through the ecosystem (Van Kessel et al., 1994; Stock et al., 1995; Fisher and Binkley, 2000; May and Attiwill, 2003); 2) via root
exudation or mycorrhizal connections between root systems when both species form symbioses with the same mycorrhizae (He et al., 2003); and 3) N$_2$-fixing plants can rely heavily on fixed N, which may be 10% to nearly 100% of the N used by the N$_2$-fixing plant (Binkley, 1992; Binkley and Giardina, 1997; Khanna, 1998; Fisher and Binkley, 2000; May and Attiwill, 2003) so more soil N may be available to non-N$_2$-fixing plants before the fixed N is cycled and transferred to the non-N$_2$-fixing plants.

Studies in agricultural or agroforestry systems have shown that a higher proportion of this symbiotically fixed N$_2$ may be used than when synthetic N fertilizer is applied (see reviews by Peoples et al., 1995; Crews and Peoples, 2005). Furthermore, less fixed N$_2$ may be lost from the plant and soil pool (via leaching or volatilization) because it is immobilized in microbial biomass and semi stable soil organic materials during decomposition (Peoples et al., 1995; Crews and Peoples, 2005). However, opposing trends have also been observed, and maximising benefits of symbiotically fixed N$_2$ also depends on synchronising the timing of N$_2$-fixation (and enhanced N availability) to when the non-N$_2$-fixing species require the N (Peoples et al., 1995; Sanginga et al., 1995; Crews and Peoples, 2005).

Few studies have examined the time it takes for the N fixed by the N$_2$-fixing species to benefit the associated species. In mixtures of *Eucalyptus x robusta* with *C. equisetifolia* or *L. leucocephala*, Parrotta et al. (1996) found that the *E x robusta* was taking up the fixed N by both N$_2$-fixing species after two years. This was demonstrated using the 15N labelling method. Similarly, using the natural abundance method Van Kessel et al. (1994) found that after one year, the δ^{15}N of the non-leguminous understorey of a *L. leucocephala* plantation was about 7.3‰ compared to less than 4‰ for *L. leucocephala*, but by years four and six, δ^{15}N of the understorey and *L. leucocephala* were about 1‰ and Van Kessel et al. (1994) concluded that the understorey relied as much on previously fixed N as the *L. leucocephala*.
Khanna (1997) showed that *E. globulus* in mixture with *A. mearnsii* (Study 1 in Table 1) were larger in terms of height growth from as early as 25 months, and *E. globulus* in mixture had higher N concentrations in fine-roots and senescent foliage when compared to monocultures at 31 and 25 months respectively. Since leaf litterfall had not commenced at this stage, increased growth and N-concentrations must have resulted from nutrient cycling through fine-roots (including nodules) (Khanna, 1997). In the same trial, average rates of N$_2$-fixation up to age 10 years were found to be about 140 and 188 kg ha$^{-1}$ yr$^{-1}$ in 1:1 mixtures and *A. mearnsii* monocultures respectively (Forrester, unpublished).

5.1.4 Effect of competition on N$_2$-fixation

Few studies have examined the effect of competition from a non-N$_2$-fixing species on rates of N$_2$-fixation or N$_{dfa}$ by a N$_2$-fixer. In an 18 month old pot trial, where N$_2$-fixing *C. cunninghamiana* were planted in 1:1 mixtures with *E. globulus*, N$_2$-fixation and N$_{dfa}$ increased from 125.48 g N plant$^{-1}$ and 86.68% in monocultures to 152.69 g N plant$^{-1}$ and 94.75% in mixture (same total plant density as monocultures) (Study 16 in Table 1; Baker et al., 1994). This was probably the result of competition for soil N from *E. globulus* (Baker et al., 1994). Also, both species grew larger in mixture than monoculture. While *E. globulus* may have competed for N, the net effect of competition for all resources from *E. globulus* on *C. cunninghamiana* must have been less than the competition from other *C. cunninghamiana* (Baker et al., 1994). In contrast, competition from *E. x robusta* planted with *C. equisetifolia* did not have any significant effect on the quantity of N fixed or N$_{dfa}$ by *C. equisetifolia* between 6-24 months of age (Parrotta et al., 1994). However, this may be due to less intense competition in the plantation when compared to the pots (Baker et al., 1994).
5.2 Litter fall and nutrient cycling

Litterfall includes all plant organs and tissues that fall to the ground, and together with decomposing roots, litterfall constitutes the principal source of organic matter for the biochemical cycling of nutrients in terrestrial ecosystems (Meentemeyer et al., 1982). Both the quantity and quality of litter have a strong influence on the nutrient flow in forests.

Reviews on litter decomposition of single-species litter have been carried out by Swift et al. (1979), Aerts (1997) and Paul et al. (2004). Rates of litter decomposition are influenced by temperature, humidity, moisture content (Meentemeyer, 1978; Nagy and Macauley, 1982; Guo and Sims, 1999), and litter quality, which may be described by lignin, C and nutrient concentrations or ratios of these (Nagy and Macauley, 1982; Taylor et al., 1991; Attiwill and Adams, 1993; Berg and McClougherty, 2003). Slow rates of decomposition and N release can slow tree growth, even when total ecosystem nitrogen is adequate (Kelty, 1992; Kelty and Cameron, 1995). Litter production may then exceed decomposition so that high quantities of nitrogen and other nutrients are stored in an organic form in the litter where they are unavailable for plant growth (Polglase and Attiwill, 1992; O'Connell and Grove, 1996).

Eucalyptus species often produce litter with low nutrient concentrations and which decomposes slowly during the early stages of decomposition (Guo and Sims, 2001; Paul et al., 2004). As a result high proportions of nutrients may be held in undecomposed litter (Adams and Attiwill, 1986). In contrast, N\textsubscript{2}-fixing species often have higher N concentrations and decompose more rapidly (e.g. Toky and Singh, 1993; Parrotta, 1999), at least initially. Mixing eucalypt litter with more readily decomposable and more nutrient rich litter may enhance the decomposition of eucalypt litter (Briones and Ineson 1996). Gartner and Cardon (2004) found that in terms of mass loss, synergistic effects occurred in the majority of mixed-litter decomposition studies (47.5%), whereas additive
(33.3) or antagonistic effects (19.1%) were less frequently observed. However, longer-term rates of decomposition may be slower for litter with high N concentrations because N can retard the later stages of lignin decay (Berg and Ekbohm, 1991; Berg, 2000). The consequences of mixing litter from different species on the long-term dynamics and quality of soil organic matter, which is more important for nutrient supply to trees, have not been sufficiently researched (Prescott 2005), and there are no long-term data on litter decomposition for combinations of eucalypts and N-fixing species.

Soil fauna and microbes play important roles in litter decomposition (Brussaard, 1998). Microbes require N and other nutrients to break down the various components of litter (lignin, tannins, cellulose). Microbial activity can increase when a species with a higher foliar N content (such as a N$_2$-fixing species) is included in the early stages of stand development to decrease the C: N ratio of the litter (Ewel, 1986; Kelty, 1992). Thus the cycling of N and other nutrients held in soil organic matter may be accelerated (Kelty and Cameron, 1995).

Quantities of N and P cycled through litterfall are often higher in mixtures of N$_2$-fixing trees and non-N$_2$-fixing trees, than monocultures of the non-N$_2$-fixing species (Binkley, 1992; Binkley et al., 1992; Parrotta, 1999). However, trends in the initial rates of decomposition and nutrient loss from mixed-species litter (compared to monoculture litter) are complex and inconsistent, and litter in mixtures with N$_2$-fixing species does not necessarily decay faster than that of non-N$_2$-fixing species in monocultures (see reviews by Binkley, 1992; Rothe and Binkley, 2001; Gartner and Cardon, 2004).

Two examples, where productivity and rates of nutrient cycling through litterfall have increased in mixtures of N$_2$-fixing species compared to monocultures of the *Eucalyptus* spp., include *Falcataaria moluccana* with *Eucalyptus saligna* (Study 7 in Table 1) (Binkley et al., 1992; DeBell et al., 1997;
Binkley et al., 2003b), and *Acacia mearnsii* with *Eucalyptus globulus* (Study 1 in Table 1) (Forrester et al., 2004; Forrester et al., 2005b). In both studies, the N and P contents of annual litterfall were significantly higher in plots containing the N$_2$-fixing species than monocultures of the *Eucalyptus* species. Rates of litter decomposition were also significantly higher in mixtures than in the *Eucalyptus* monocultures (Forrester et al., 2005b). Similar increases in N and P cycling or availability have been observed in other mixed-species systems containing *Eucalyptus* species (Turvey et al., 1984; Parrotta et al., 1996; Parrotta, 1999; May and Attiwill, 2003). It is important to note that even species with low rates of N$_2$-fixation (< 10 kg N ha$^{-1}$ yr$^{-1}$) but high leaf nutrient contents and rates of nutrient cycling may significantly enhance nutrient cycling in mixed stands (Forrester et al., 2005a).

These results from mixed plantations are consistent with those from native *Eucalyptus* forests, where *Acacia* species and other N$_2$-fixers can be an important component owing to the quantity of the N they fix (Hamilton et al., 1993; May and Attiwill, 2003) and the amount of N they cycle through litterfall (McColl, 1966; Hingston et al., 1979; Grove and Malajczuk, 1985; O'Connell, 1986).

5.3 Resource use efficiency and biomass allocation

Plantation growth can be described as a function of resource supply, the proportion of resources captured and the efficiency with which they are used to fix CO$_2$ (Binkley et al., 2004). The previous sections have discussed increases in resource capture, through canopy and root stratification, and increased supply, through N$_2$-fixation and accelerated rates of nutrient cycling. In addition and complementary to these processes, growth may be influenced by changes in the efficiency of resource use.
Binkley et al. (2004) found that *Eucalyptus* plantations on more productive sites tend to have higher resource use efficiencies than those on less productive sites, and hence that silvicultural treatments may not only increase resource supplies but also the efficiency of resource use. Thus the increased N availability from N$_2$-fixation and the accelerated rates of N and P cycling may also increase the nutrient, light and water use efficiency of mixed-species stands.

For example several studies have found that increased N and P availability increased instantaneous water use efficiency in a number of species (Sheriff et al., 1986, *Pinus radiata*; Green and Mitchell, 1992, *Pinus taeda*; Bruck et al., 2000, *Pennisetum glaucum*; Bruck et al., 2001, *Canna edulis*; Hobbie and Colpaert, 2004, *Pinus sylvestris*). However, Hubbard et al. (2004) found that following fertilization in an *E. saligna* plantation, stand water use increased because leaf area increased, and water use efficiency was similar in fertilized and unfertilized stands. Similarly Hatton et al. (1998) found linear relationships between tree leaf area and mean daily water use for several *Eucalyptus* species and sites. Therefore mixtures, which are more productive and have higher leaf areas than *Eucalyptus* monocultures, may use more water.

Light saturated rates of photosynthesis in *Eucalyptus* species often increase with increasing leaf N concentrations as a result of N fertilisation, foliage N-concentration gradients within the canopy or species differences (Mooney et al., 1978; Clearwater and Meinzer, 2001; Grassi et al., 2002; Warren and Adams, 2004), although this is not always the case (Close et al., 2004). Leaf N concentrations have increased in *E. globulus* (Bauhus et al., 2004) and *E. saligna* (Forrester, 2004) growing with *A. mearnsii* in plantations and in *E. delegatensis* growing with *A. dealbata* in a native forest (Küppers, 1996). However, despite the increased N concentrations of *E. globulus* in 1:1 mixtures (1.24%) compared to monocultures (1.09%) light saturated rates of photosynthesis in the mid canopy were lower in mixtures (11.2 μmol CO$_2$ m$^{-2}$ s$^{-1}$) than monocultures (14.6 μmol CO$_2$ m$^{-2}$).
s\(^{-1}\) (Bauhus et al., 2004). In addition the efficiency of *E. globulus* crowns, estimated as aboveground tree biomass per unit crown volume, was similar in mixture to monoculture.

Nevertheless Binkley et al. (2004) showed that trends occurring at the scale of leaves and seconds may not represent those occurring at the scale of stands and years, as a result of more complete biomass accounting (including respiration), interactions among resources and adaptation of biomass partitioning to optimize resource capture and use. On the scale of trees and stands, Binkley et al. (1992) and Forrester et al. (2005b) found that *E. saligna* and *E. globulus* were more efficient in their N and P use than *F. moluccana* and *A. mearnsii*, respectively (where efficiency was estimated as aboveground biomass increment per unit nutrient in annual litterfall). Thus monocultures of the *Eucalyptus* species were most efficient and those of *F. moluccana* and *A. mearnsii* were least efficient. The same trend was found in a pot trial containing mixtures of *E. globulus* and *A. mearnsii* (Forrester et al., 2006b). However, it did not appear as though the nutrient use efficiencies of any species were changed by growing in mixtures. In contrast, possible changes in efficiency were observed by Binkley (1983) in mixtures of *Pseudotsuga menziesii* and *Alnus rubra*. In this study, foliar N concentrations of *P. menziesii* increased from 9.3 mg g\(^{-1}\) in monoculture to 14.1 mg g\(^{-1}\) in mixture with *Alnus rubra*, and *P. menziesii* annual stem biomass growth was about 20% higher in mixture with only 35% of the leaf biomass of the *P. menziesii* growing in monocultures (Binkley, 1983). This may have resulted from a greater net photosynthetic rate per unit leaf area or a change in biomass allocation (Binkley, 1983).

Increased N availability may also increase leaf area, which increases light capture and canopy photosynthesis, and hence gross primary production (see Landsberg, 1997). For example Cromer et al. (1993) and Smethurst et al. (2003) found that N and P fertiliser increased leaf area and biomass production in plantations of *E. grandis* and *E. nitens*, respectively. However, increases in leaf area
in response to fertiliser may also be associated with changes in the allocation of C from belowground to aboveground growth (Cannell, 1985).

Increases in nutrient availability can shift allocation of C from roots and mycorrhizae (for nutrient uptake) to aboveground plant parts, to increase the capture of light and CO$_2$ (Cannell, 1985; Raich, 1998; McConnaughay and Coleman, 1999). However, few studies have examined whether increases in aboveground growth associated with a higher nutrient availability result from an increase in total productivity (both above- and belowground), a shift in biomass partitioning, or both (Ryan et al., 1996; Keith et al., 1997). Furthermore, the results of such studies have been variable, documenting increases, decreases and no change in belowground C fluxes with increasing nutrient supply (Haynes and Gower, 1995; Ryan et al., 1996; Keith et al., 1997; Raich, 1998; Zak and Pregitzer, 1998; Pongracic, 2001; Giardina and Ryan, 2002; Giardina et al., 2003). These contrasting findings may result from species-specific strategies for acquiring belowground resources, and therefore general trends in belowground C allocation with changing nutrient availability may exist only for groups of plants and not all species as a whole (Zak and Pregitzer, 1998).

Only one study has investigated the C allocation in mixtures of *Eucalyptus* and N$_2$-fixing species. In an 11 year old mixed-species plantation where 1:1 mixtures of *E. globulus* and *A. mearnsii* produced twice the aboveground biomass of *E. globulus* monocultures (Study 1 in Table 1), the total annual belowground C allocation (TBCA; 14.6 to 16.3 Mg ha$^{-1}$ yr$^{-1}$) was not significantly different between the mixture and the monocultures (Forrester et al., 2006a). Higher ratios of aboveground net primary production to TBCA in the mixtures (0.41) than in either monoculture (100%A: 0.28, 100%E: 0.31) indicated that trees in mixture partitioned a lower proportion of their C belowground than those in monocultures. Since the mixture was as productive as monocultures belowground but more productive aboveground, it was also more productive overall. Therefore
mixed-species plantations may have the potential to increase C sequestration above that of monocultures.

6. Effects of site quality on species interactions

As discussed above, differing characteristics can allow component species of a mixture to coexist in an environment with high productivity (Harper, 1977). However, in addition to this matching of species, successful mixed-species plantations require the matching of the species combination with the site so that the competitive interactions are minimised while the competitive reduction and facilitative interactions are maximised.

Facilitation often occurs simultaneously with competition, and the complex interactions between these mechanisms determine the overall productivity (Callaway, 1995; Holmgren et al., 1997). Facilitation or competitive reduction interactions generally predominate where resources are in low supply, under high physical stress or high consumer pressure (Bertness and Callaway, 1994; Holmgren et al., 1997). The dominance of competition increases on more productive sites, where physical stress or consumer pressures are low (Bertness and Callaway, 1994; Holmgren et al., 1997). Facilitation or competitive reduction in mixed stands may only increase yields, if there is a limited supply of the resource for which acquisition was facilitated or competition was reduced, such that the effect of these positive interactions outweigh the negative, competitive effects.

The influence of soil N and P availability on the growth of mixtures have been examined directly in a field trial with *E. saligna* and *F. moluccana* (Boyden et al., 2005) and in a pot trial with *E. globulus* and *A. mearnsii* (Forrester et al., 2006b). Forrester et al. (2006b) compared the growth of *E. globulus* and *A. mearnsii* in mixed pots, which contained one of each species, to monospecific pots, which contained two *E. globulus* or two *A. mearnsii* plants. These were fertilised with high
and low rates of N and P. *Eucalyptus globulus* grew larger in mixture than monocultures and this effect was greater at high levels of N or P than at low levels (Figure 4). *Acacia mearnsii* also grew larger in mixture than monoculture at low levels of N. However, growth was not significantly different at high or low levels of P, and at high N, *E. globulus* suppressed *A. mearnsii* growth, and mixtures were less productive than *E. globulus* monocultures. This experiment indicated that a very fast growing and efficient user of site resources, such as many *Eucalyptus* spp., planted on a site with high resource availability may not produce higher yields when grown in mixture.

Boyden et al. (2005) examined the inter- and intraspecific interactions between *E. saligna* and *F. moluccana* neighbours along gradients of N and P availability, and found similar trends to that of Forrester et al. (2006). The growth of *E. saligna* trees increased with *F. moluccana* at high P but declined at low P. Growth of *F. moluccana* was higher with *E. saligna* neighbours at low N, but lower at high N, where the competitive influence of *E. saligna* was higher. These interactions measured for individual trees were more complex than indicated by stand level analyses, which showed that *E. saligna* trees had higher growth rates in mixtures than monocultures and *F. moluccana* trees were neither positively or negatively affected by growing in mixture (Binkley et al., 2003b).

7. Meta-analysis of published mixed-species trials

Table 1 presents a large collection of data which individually is often inconclusive, but which collectively may shed light on the benefits of mixed-species plantings. Relative Yields (RY) are often used for such comparisons, but a thorough analysis requires data from both monocultures as well as one or more species mixtures. The computation of RY relies heavily on the estimate of the monoculture yield, and any error or bias in the estimated monoculture yield propagates through the calculation and may have an undue influence on the analysis.
We have used an alternative regression approach (and the statistical software ARC, Cook and Weisberg 1999) which allowed greater use of the available data (Figure 5). Our null hypothesis assumed no interaction between species (cf. Figure 1a), implying a straight line regression between the logarithm of total yield and the percentage of eucalypts in the treatment ($\log_{10} Y = \beta_0 + \beta_1 P_e$). The logarithm transform was indicated by the Box-Cox test (lambda-hat=0.23), and stabilized the variance. Notice that the fitted regressions need not pass through any of the points, but represent the best (least squares) fit to all of the data points within a study (e.g., solid line for Study 15 in Figure 5), reducing the possible risk of bias from misleading monoculture data. If the null hypothesis (that there is no species interaction) is correct, the residuals about these regression lines should not exhibit a pattern, but should approach randomness.

Figure 6 illustrates the pattern of residuals arising from fitting these regressions. In most of the studies reported in Table 1, there is evidence of a trend in these residuals. In most cases, this trend is ‘n-shaped’, indicating that mixtures have higher production than monocultures (as in Figure 1d). In the case of the filled symbols (Studies 2 & 14 shown as ▲, and studies 1, 4, 7, 9Ent, 11L, 16 & 18 [except 18.LoP] shown as ●), this trend is quite pronounced. Three studies (9L, 12ret and 17) exhibit a ‘u-shaped’ trend indicating that a mixture has a lower production than monocultures. Study 4, which appeared to have a lower production when examined using RY in Figure 2, is seen here to have a slight ‘n-shaped’ trend indicative of a slightly increased production in a mixture (and Table 1 indicates 5.9 Mg ha$^{-1}$ from eucalypts, 26.4 from acacias = 16.15 Mg ha$^{-1}$ average for monocultures; cf. 16.4 Mg ha$^{-1}$ from the mixture).

Figure 6 illustrates that the null hypothesis (no species interactions) may be inadequate, and this impression is confirmed by formal testing using a quadratic equation of the form $\log_{10} Y_i = \beta_{0i} + \beta_{1i} P_e + \beta_{2i} P_e^2$ (where the i is specific to each study). An ANOVA (Table 2) reveals that
the regression is adequate (Regression P<0.0001), sufficient (Lack of fit P=0.06), and that a quadratic trend is warranted (P=0.0001). The significant quadratic term (P=0.0001) refutes the null hypothesis: this meta-analysis provides strong evidence that species interactions are evident in the data reported in Table 1.

Parameter estimates from the regression suggest that it may be useful to group the studies from Table 1 into three groups according to the magnitude of the yield increase evident in mixtures (Table 3). Studies 1, 2, 7, 11L, 16 and 18HiP have \(\beta_2 \)'s that are significantly different from zero (P≤0.05). The estimated \(\beta_2 \) for Study 2 is large (in magnitude; <-0.0002), and significantly different from most of the other studies, so was grouped with Study 14 for which a similar estimate of \(\beta_2 \) was obtained (Group 1). Studies 1, 4, 7, 9Ent, 11L, 16 and 18 (except 18LoP) have estimates that are similar (between -0.00010 and -0.00025) and which do not differ significantly (P>0.05), so these were assigned to Group 2. Studies 3, 5, 6, 9F, 10, 11C, 12rem, 13, 15 & 18LoP have estimates of \(\beta_2 \) that are negative (thus implying an ‘n-shaped’ trend), but not significantly different from zero (P>0.3; call this Group 3). Studies 9L, 12ret & 17 have parameter estimates that are positive (‘u-shaped’ trend), but not significantly different from any of the members of Group 3, and Study 8 has insufficient data to allow an estimate to be quantified, so all were included in Group 3.

Refitting this equation (Log\(_{10}\) \(Y_i = \beta_0 + \beta_1 P_e + \beta_2 P_e^2 \), where \(j \) represents the group) offered parameter estimates for \(\beta_2 \) of -0.000352 (s.e.=0.000043, P<0.0001), -0.000161 (s.e.=0.000019, P<0.0001) and -0.000027 (s.e.=0.000015, P=0.0798) for Groups 1, 2 & 3 respectively. The estimates for groups 2 & 3 differ from zero, and from each other (P=0.0001), supporting the contention that three groups are necessary and adequate. It is important to note that this grouping is not based on prior knowledge of the studies involved, and there are no a priori reasons for this grouping based on the nature of the mixtures (stand structure, experimental design, species composition).
In Table 3, many of the parameter estimates are not significant, but pooling these data in a meta-analysis provides sufficient data to contribute to a statistically significant (P<0.0001) conclusion that about half of the studies reported in Table 1 can be expected to contribute higher yields when grown in mixtures rather than monocultures. The remaining studies are not considered different from the null hypothesis at conventional significance levels, but there is some evidence of a growth stimulus (P=0.08), and a similar analysis with additional data may be more revealing. Some of the studies were split across groups, and it is noteworthy that a weedy understorey (Study 12) and low phosphorus (Study 18) detracted from an otherwise beneficial mixture. Note that there are insufficient degrees of freedom to comment on the shape of the response (or to detect the optimum composition); the analysis merely reveals the magnitude of the yield stimulus provided by a mixture. Caution is needed in extrapolating these findings to other situations. It is possible that the overall significant finding arose because journals prefer to publish papers which report yield increases in mixtures, rather than reports of indifferent or diminished yields. Also, researchers may be more inclined to investigate species mixtures where synergistic effects between the species occurred, rather than mixtures where antagonistic effects prevailed. Nonetheless, Table 3 offers clear evidence that in some situations, mixed plantings of eucalypts and nitrogen-fixing species can contribute to yields that are higher than could be attained with comparable monocultures.

8. Implications and future research needs

Mixing N\textsubscript{2}-fixing species with *Eucalyptus* species can lead to increases in total stand productivity and in some cases the productivity of the *Eucalyptus* component alone (Binkley et al., 2003b), when compared to *Eucalyptus* monocultures. However, there are also examples of reduced productivity with the N\textsubscript{2}-fixing species suppressing the growth of the *Eucalyptus*. To maximise the probability of success, it is important to understand the processes and interactions that occur in these stands. Based on our current understanding, it is important to select species with compatible height growth rates to
ensure that the less shade-tolerant species are not overtopped by the more shade-tolerant species. This requires knowledge of height-age curves of each species in monoculture and the relative shade tolerances of each species (Fisher and Binkley, 2000; Forrester et al., 2005a). Competition for light can also be managed using variations of planting designs and the relative timing of planting each species. Following the consideration of height growth dynamics, the selection of N\textsubscript{2}-fixing species should be based on their ability to cycle nutrients and on their ability to fix N\textsubscript{2}.

Appropriate site selection is also critical to the success of mixed stands. Mixtures will only improve productivity if the processes and interactions between species reduce the competition or increase the availability of a growth limiting resource for that site. This is probably the most difficult information to obtain, particularly when the species have not been grown previously on comparable sites.

While interest and research into mixed-species systems is growing, there are too few observations of the interactions between species, and the influence of site factors on these interactions, to accurately predict successful combinations or sites on which to grow them (Forrester et al., 2005a). For example Table 1 shows all the mixtures containing *Eucalyptus* with a N\textsubscript{2}-fixing species that could be found in the literature. This is clearly an incomplete picture. In their review on nutritional interactions in mixtures, Rothe and Binkley (2001) recommended two components to future research. One was a statistical approach to increase the degrees of freedom when analysing processes in mixtures. For example the establishment of the same species combination on different sites or similar species combinations on comparable sites would enable the development of frequency distributions on the occurrence of various effects in mixtures. When using this statistical approach it is useful to consider the hierarchy of different designs in terms of the confidence or degree of certainty to which the results can be applied to other sites or populations. For example, confidence can increase from case studies (with no replication) at a single site, to experiments with
replication at a single site, to replication at several sites, to a meta-analysis of similar experiments that show consistent effects (Binkley and Menyailo, 2005). The degree of confidence will depend on the population within the experiment compared to the population to which the results are to be extrapolated. In the past meta-analyses have not been possible in mixtures of *Eucalyptus* and N$_2$-fixing trees, however, the recent establishment of trials in South America, Congo (Bouillet et al., 2004), Australia (Forrester, 2004) and China (Zhang, 2003; Xiao et al., 1999), will enable such analyses.

Secondly Rothe and Binkley (2001) recommended a mechanistic approach. This would involve an examination of the processes and interactions between species and their interactions with sites. This information could then be used to develop mechanistic models for predicting the growth of various species combinations, across a range of sites. Existing mechanistic models such as CABALA (Battaglia et al., 2004), which has already been parameterised for *E. nitens* and *E. globulus*, would provide a useful basis for this work. This will require the examination of processes that have received little or no attention in the past such as the dynamics of N$_2$-fixation in tree stands, fine root nutrient uptake and use efficiencies, belowground C allocation, water use and water use efficiencies.

This mechanistic approach would improve our understanding of what controls the balance between a competitive or facilitative relationship for a given set of species, which is essential when managing mixtures (Boyden et al., 2005). Studies that examine the inter- and intraspecific interactions between *Eucalyptus* and N$_2$-fixing neighbours along gradients of N and P availability, such as that in *E. saligna* and *F. moluccana* mixtures by Boyden et al. (2005) would also be very useful.
Finally acceptance of mixtures will generally depend on social and economic considerations, both of which are complex and will vary with each location. Several economic analyses on mixtures have shown that mixtures can give more favourable economic outcomes than monocultures (FAO, 1992; Montagnini et al., 1995; DeBell et al., 1997; Xiao et al., 1999).

9. Acknowledgments

Funding for this project was provided by Forest and Wood Products Research and Development Corporation (PG01.3102), the Cooperative Research Centre for Greenhouse Accounting and the Wilf Crane Memorial Award (Institute of Foresters of Australia). Thanks to Partap Khanna, Dan Binkley and an anonymous reviewer for critical comments on this paper.

10. References

Binkley, D., Senock, R., Cromack, K. J., 2003a. Phosphorus limitation on nitrogen fixation by

For. Ecol. Manage. 193, 5-16.

Binkley, D., Dunkin, K. A., DeBell, D., Ryan, M. G., 1992. Production and Nutrient Cycling in
Mixed Plantations of Eucalyptus and Albizia in Hawaii. For. Sci. 38, 393-408.

Binkley, D., Senock, R., Bird, S., Cole, T. G., 2003b. Twenty years of stand development in pure
and mixed stands of Eucalyptus saligna and N-fixing Facaltaria moluccana. For. Ecol.
Manage. 182, 93-102.

P., 2004. Potential for legume introduction in short rotation plantation forests as a means to
improve productivity and soil fertility? The need for coordinated research. In: Parrotta, J. A.,
Maître, H. F., Auclair, D., Lafond, M. H. (Eds.), Meeting the challenge: Silvicultural
research in a changing world, 14-18 June, Montpellier, France. pp. 17-19.

Boyden, S., Binkley, D., Senock, R., 2005. Competition and facilitation between Eucalyptus and

Biology and Biochemistry 28, 1381-1388.

Bristow, M., Vanclay, J., Brooks, L., Hunt, M., 2006. Growth and species interactions of
Eucalyptus pellita in a mixed and monoculture plantation in the humid tropics of north

untapped Resource for Sustainable Plantations, Farm Forestry and Land Reclamation.
ACIAR Monograph No. 115.

Snowdon, P., Wichienmopparat, W., Khanna, P. K., 2003. Growth, above-ground biomass and nutrient content of eucalypts and acacias grown in mixture in a tropical environment -
Evaluation for one full rotation. International Conference on Eucalypt Productivity, Hobart, Australia.

Table 1. Productivity of mixtures in field and pot trials. For more examples of mixed species stands see (Cannell et al., 1992; FAO, 1992; Forrester, 2004). The table is continued on the following pages.

<table>
<thead>
<tr>
<th>Study number</th>
<th>System, age, location</th>
<th>Species</th>
<th>Species Proportions (based on stems ha(^{-1})). Numbers are %.</th>
<th>Total above ground biomass (Mg ha(^{-1}))</th>
<th>RY</th>
<th>RYT</th>
<th>Interactions</th>
<th>Stocking (stems ha(^{-1})). All mixed within rows unless otherwise stated.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plantation, 11 years, East Gippsland, Australia</td>
<td>Eucalyptus globulus and Acacia mearnsii</td>
<td>E 100E (fertilised) and 70 A 47</td>
<td>E 70 A 47 Total 117</td>
<td>E A 0.98 0.50 1.48</td>
<td>Improved nutrition due to accelerated rates of N and P cycling through litterfall (100%Euc: 2.4 Mg litter, 13.7 kg N, 0.5 kg P; 50%Euc: 3.7 Mg litter, 39.2 kg N, 0.8 kg P; 100%Aca: 3.3 Mg litter, 48.8 kg N, 0.8 kg P; all ha(^{-1}) yr(^{-1}); (Forrester et al., 2005b) and reduced light competition due to canopy stratification (Bauhus et al., 2004; Forrester et al., 2004).</td>
<td>Fertilised monoculture was 1212 stems ha(^{-1}) and all other treatments were 1010 stems ha(^{-1}). By 14 months fertilised 100%Euc had received 250 kg ha(^{-1}) N, 160 kg ha(^{-1}) P and 170 kg ha(^{-1}) K. All other treatments received 25 kg ha(^{-1}) P at 3 months.</td>
<td>Khanna, 1997; Bauhus et al., 2000; Bauhus et al., 2004; Forrester et al., 2004.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Plantation, 10 years, India</td>
<td>Eucalyptus globulus and Acacia mearnsii</td>
<td>E 100E and 50A 250</td>
<td>E 322 A 250 Total 572</td>
<td>E A 0.85 1.44 2.29</td>
<td>Possible interactions not discussed.</td>
<td>Alternate rows. 2500 stems ha(^{-1}). 818 stems ha(^{-1}) 750 stems ha(^{-1}) 692 stems ha(^{-1}) 600 stems ha(^{-1}) 1600 stems ha(^{-1}).</td>
<td>2500 stems ha(^{-1}).</td>
<td>Samraj et al., 1977</td>
</tr>
<tr>
<td>3</td>
<td>Plantation, 5 years, Eden, Australia</td>
<td>Eucalyptus nitens and Acacia mearnsii</td>
<td>E 100E (inoculated with superior strains of rhizobia, A = uninoculated)</td>
<td>E 38.4 A 45.5 Total 83.9</td>
<td>E A 0.47 0.57 1.04</td>
<td>Mixtures were intermediate in productivity between the monocultures. Growth may have been limited more by soil moisture availability than by soil N availability.</td>
<td>Alternate rows. 2500 stems ha(^{-1}).</td>
<td>Forrester, 2004</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Plantation, 2 years, Nowra, Australia</td>
<td>Eucalyptus saligna and Acacia mearnsii</td>
<td>E 100E and 50A 250</td>
<td>E 38.4 A 250 Total 634</td>
<td>E A 0.39 0.53 0.92</td>
<td>Foliar N concentrations of E. saligna leaves were higher in mixture than monoculture but any increase in nutrient availability was outweighed by competition for other resources (soil moisture or P).</td>
<td>Alternate rows, 2500 stems ha(^{-1}).</td>
<td>Forrester, 2004</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Plantation, 98 months, Ratchaburi, Thailand</td>
<td>Eucalyptus camaldulensis and Acacia auriculiformis</td>
<td>E 100E and 50A 250</td>
<td>E 38.4 A 250 Total 634</td>
<td>E A 0.72 0.24 0.97</td>
<td>E. camaldulensis were larger in 50:50 mixture at 28 and 48 months probably due to improved N nutrition from N fixation by A. auriculiformis. Later A. auriculiformis were taller than E. camaldulensis and probably competed for water, P and light, thus reducing the growth of E. camaldulensis in mixture compared to monoculture.</td>
<td>1250 stems ha(^{-1}).</td>
<td>Wichiennoenpoparat et al., 1998; Snowdon et al., 2003</td>
<td></td>
</tr>
</tbody>
</table>

Table continued on next page.
<table>
<thead>
<tr>
<th>Study number</th>
<th>System, age, location</th>
<th>Species</th>
<th>Species Proportions (based on stems ha(^{-1})). Numbers are %.</th>
<th>Total above ground biomass (Mg ha(^{-1}))</th>
<th>RY</th>
<th>RYT(^a)</th>
<th>Interactions</th>
<th>Stocking (stems ha(^{-1})). All mixed within rows unless otherwise stated.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Plantation, 45 months, Rio Grande do Sul, Brazil</td>
<td>Eucalyptus saligna and Acacia mearnsii*</td>
<td>100E 109 50E : 50A 71 100A 78</td>
<td>109 110 0.65 0.50 1.15</td>
<td>E A</td>
<td>Improved N nutrition of E. saligna.</td>
<td>Alternate rows, 1667 stems ha(^{-1}).</td>
<td>Vezzanni et al., 2001</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Plantation, 20 years, Hawaii, USA</td>
<td>Eucalyptus saligna and Falcataria moluccana* (=Albizia falcata)</td>
<td>100E (fertilised) 235 89E : 11F 238 268 75E : 25F 355 50E : 50F 287 25E : 75F 223 100F 200</td>
<td>230 315 1.01 0.31 1.32</td>
<td>E F</td>
<td>Improved nutrient use efficiency of E. saligna, greater nutrient cycling under F. moluccana and greater light capture and high light use efficiency in mixed stands. Higher N availability under F. moluccana and reduced light competition due to canopy stratification.</td>
<td>2500 stems ha(^{-1}). During the first 55 months all treatments received 120 kg ha(^{-1}) N, 108 kg ha(^{-1}) P and 219 kg ha(^{-1}) K. 100%Euc also received an additional 250 kg ha(^{-1}) N in this time.</td>
<td>DeBell et al., 1989; Binkley et al., 1992; DeBell et al., 1997; Binkley et al., 2003b</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Plantation, 65 months, Hawaii, USA</td>
<td>E. saligna or E. grandis and Falcataria moluccana</td>
<td>100E (fertilised) 37.6 50E : 50F 58.2 100E 58.2</td>
<td>37.6 95.3 1.55</td>
<td>E F</td>
<td>Higher foliar N in Eucalyptus in mixture than monoculture especially when with F. moluccana. However, soil N concentration declined in mixtures compared to Eucalyptus monocultures. Eucalyptus grew taller in mixtures and overtopped A. melanoxylon but was overtopped between 2 and 4 years by F. moluccana.</td>
<td>Alternate rows. 2500 stems ha(^{-1}).</td>
<td>DeBell et al., 1985</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Coppiced plantation, 4 year rotation, Hawaii, USA</td>
<td>Eucalyptus grandis and Leucaena leucocephala x L. diversifolia, Eucalyptus grandis and Falcataria moluccana*, Eucalyptus grandis and Enterolobium cyclocarpum*</td>
<td>100E 60.3 50E : 50%L 63.4 50E : 50%F 57.6 50E : 50%Ent 59.6 100L 63.4 100F 57.6 100Ent 59.6</td>
<td>63 63</td>
<td>L/F/Ent</td>
<td>Total</td>
<td>Yield in mixtures were not significantly different to monocultures. There was intense competition for light for E. saligna with Leucaena leucocephala and Falcataria moluccana.</td>
<td>6667 stems ha(^{-1}).</td>
<td>Austin et al., 1997</td>
</tr>
<tr>
<td>10</td>
<td>Plantation, 7 years, Espirito Santo, Brazil</td>
<td>Eucalyptus urophylla and two Leucaena leucocephala* varieties (K8 and K72)</td>
<td>100E 174 50Euc : 50LK72 146 100LK72 146</td>
<td>174 146</td>
<td>LK8/LK72</td>
<td>Total</td>
<td>Both species contributed approximately equally in both mixture treatments in terms of productivity. E. urophylla overtopped L. leucocephala from year one. Survival of E. urophylla declined in mixture due to attack from the Eucalyptus canker Cryptonectria, possibly due to higher humidity in mixtures. Diameters of both species were larger in mixtures. Lack of stand biomass increase in mixture may result from relatively higher site fertility and application of inorganic fertilisers.</td>
<td>Alternate rows. 1342 stems ha(^{-1}).</td>
<td>Moraes De Jesus and Brouard, 1989</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>Study number</th>
<th>System, age, location</th>
<th>Species</th>
<th>Total above ground biomass (Mg ha(^{-1}))</th>
<th>RY</th>
<th>RYT</th>
<th>Interactions</th>
<th>Stocking (stems ha(^{-1}))</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Plantation, 4 years, Puerto Rico</td>
<td>Eucalyptus x robusta, Casuarina equisetifolia, and Leucaena leucocephala</td>
<td>E 62.5 C/L 63</td>
<td>E 0.43 C/L 1.09</td>
<td>E x robusta growth was not enhanced in mixture despite high rates of N fixation. Accelerated rates of nutrient cycling through litterfall and higher soil N (although not always significant) in mixtures with N fixers compared to E x robusta monocultures. Both N fixers grew larger in mixture with E x robusta than in monoculture but E x robusta was smaller in mixture.</td>
<td>10 000 stems ha(^{-1})</td>
<td>Parrotta et al., 1996; Parrotta, 1999</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Plantation 7 years, Mtunzini, South Africa</td>
<td>Eucalyptus grandis x E. camaldulensis and Vigna unguiculata (Vig I = one row of Vig and Vig II = two rows of Vig)</td>
<td>E 167 E 172 E 204 E 182 E 197</td>
<td>1.28 1.03 1.22 1.09 1.18</td>
<td>Eucalyptus grandis x E. camaldulensis responded to the reduction in competition from weeds and to the facilitative influence from Vigna unguiculata. However, while the net effect of the Vigna unguiculata increased growth compared to the unweeded treatment, Eucalyptus growth was even better in the absence of both weeds and Vigna.</td>
<td></td>
<td>Little et al., 2002</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Plantation 6 years, Leizhou, Guangdong, China</td>
<td>Eucalyptus urophylla and Acacia crassicarpa</td>
<td>E 82.8 A 55.9 A 61.1 A 71.4 A 60.1 A 63.9 A 72.8 A 79.0 A 61.1 A 100A</td>
<td>Total 83 98 82 83 84 95 90 91</td>
<td>E 0.68 A 0.74 A 0.86 A 0.73 A 0.77 A 0.88 A 0.95 A 0.74 A 0.74</td>
<td>E. urophylla generally had larger diameters and heights in mixtures than in monocultures but A. crassicarpa were generally smaller in mixture. Reduced competition for light due to E. urophylla canopy stratification.</td>
<td>2400 stems ha(^{-1}). Trees mixed within or in alternate rows: 1 row of Aca and 1 row of Euc. 1 row of Aca and 2 rows of Euc. 1 row of Aca and 3 rows of Euc. 2 rows of Aca and 3 rows of Euc. 1 Aca tree and 1 Euc tree in the same row. 1 Aca tree and 2 Euc trees in the same row. 1 Aca tree and 3 Euc trees in the same row. 2 Aca trees and 3 Euc trees in the same row.</td>
<td>Zhang, 2003</td>
</tr>
<tr>
<td>14</td>
<td>Plantation 6 years, Leizhou, Guangdong, China</td>
<td>Eucalyptus urophylla and Acacia crassicarpa</td>
<td>E 61 A 65 A 83 A 74 A 91 A 89</td>
<td>Total 61 83 1.06</td>
<td>E 0.60 A 0.95 A 1.12</td>
<td>Reduced light competition for E. urophylla, which over topped A. crassicarpa. Forest floor litter layers in mixtures contained more mass and N, P, K, Ca and Mg than E. urophylla monocultures. Soil N, P and K were also higher in mixtures than in monocultures.</td>
<td>2631 Euc stems ha(^{-1}) and 1243 Aca stems ha(^{-1}) (mixed in alternate rows).</td>
<td>Xiao et al., 1999</td>
</tr>
</tbody>
</table>

Table continued on next page.
Table 1. Continued.

<table>
<thead>
<tr>
<th>Study number</th>
<th>System, age, location</th>
<th>Species</th>
<th>Species Proportions (based on stems ha⁻¹). Numbers are %.</th>
<th>Total above ground biomass (Mg ha⁻¹)</th>
<th>RY</th>
<th>RYT°</th>
<th>Interactions</th>
<th>Stocking (stems ha⁻¹). All mixed within rows unless otherwise stated.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Plantation 10.1 years, Atherton Tablelands, Australia</td>
<td>Eucalyptus pellita and Acacia peregrina</td>
<td>100E 170 E** 160 8 169 A** 88 17 102 88 50 48</td>
<td>168 Total** 0.94 0.15 1.10</td>
<td></td>
<td>Reduced light competition due to canopy stratification.</td>
<td>Alternate rows. 375 to 480 stems ha⁻¹ (after cyclone damage reduced stocking from 1000 stems ha⁻¹ at age 2 and 3 years).</td>
<td>Bristow et al., 2006</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pot trial, 18 months</td>
<td>Eucalyptus globulus and Casuarina cunninghamiana</td>
<td>100E 128 E** 104 150 224 C**</td>
<td>128 Total 0.81 0.67 1.48</td>
<td></td>
<td>Higher N availability for E. globulus.</td>
<td>4 plants per pot</td>
<td>Baker et al., 1994</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Pot trial, 211 days</td>
<td>Eucalyptus regnans and Acacia melanoxylon</td>
<td>100E 5.2 E** 1.9 3 4.9</td>
<td>5.2 Total 0.37 0.53 0.89</td>
<td>472 E***</td>
<td>6 plants per pot</td>
<td>A. melanoxylon was a more aggressive competitor than E. regnans. A. melanoxylon had a lower root: shoot ratio than E. regnans and may be more efficient at taking up water and nutrients.</td>
<td>Bi and Turvey, 1994</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Pot trial, 50 weeks</td>
<td>Eucalyptus globulus and Acacia mearnsii</td>
<td>Low nitrogen 100E 726 E*** 498</td>
<td>726 Total 0.69 0.66 1.35</td>
<td>50E : 50A 1792 1329 277 750</td>
<td>0.74 0.37 1.11</td>
<td>At high N and both high and low levels of P fertiliser E. globulus appeared to dominate and suppress A. mearnsii. The greater competitiveness of E. globulus in these situations may have resulted from its higher N and P use efficiency and greater growth response to N and P fertilisers compared to A. mearnsii.</td>
<td>2 plants per pot</td>
<td>Forrester et al., 2006b</td>
</tr>
</tbody>
</table>

*N-fixing species, **Volume (m³ ha⁻¹), ***stem biomass (Mg ha⁻¹) estimated from graph, # volume (m³ ha⁻¹) estimated from graph, ## plant biomass estimated from graph (g pot⁻¹), ### aboveground biomass (g pot⁻¹). °RYT = RY (species A) + RY (species B) in a mixture of two species (A and B).
Table 2. Analysis of Variance indicates that mixtures contribute higher yields.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>78</td>
<td>260.646</td>
<td>3.3416</td>
<td>161.98</td>
<td><0.0001</td>
</tr>
<tr>
<td>Intercepts</td>
<td>26</td>
<td>252.676</td>
<td>9.7183</td>
<td>471.07</td>
<td><0.0001</td>
</tr>
<tr>
<td>Slopes</td>
<td>27</td>
<td>5.646</td>
<td>0.2091</td>
<td>10.14</td>
<td><0.0001</td>
</tr>
<tr>
<td>Single quadratic</td>
<td>1</td>
<td>1.098</td>
<td>1.0984</td>
<td>53.24</td>
<td><0.0001</td>
</tr>
<tr>
<td>Separate quadratics</td>
<td>24</td>
<td>1.225</td>
<td>0.0510</td>
<td>2.47</td>
<td>0.0092</td>
</tr>
<tr>
<td>Residual</td>
<td>31</td>
<td>0.640</td>
<td>0.0206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>20</td>
<td>0.523</td>
<td>0.0261</td>
<td>2.46</td>
<td>0.0633</td>
</tr>
<tr>
<td>Pure error</td>
<td>11</td>
<td>0.117</td>
<td>0.0106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Parameter estimates for β_2 (in ascending order) in the equation $\log_{10} Y = \beta_0 + \beta_1 P_e + \beta_2 P_e^2$.

<table>
<thead>
<tr>
<th>Study</th>
<th>Estimate</th>
<th>s.e.</th>
<th>Student’s t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>-0.00008067</td>
<td>0.0005192</td>
<td>-1.554</td>
<td>0.1304</td>
</tr>
<tr>
<td>2</td>
<td>-0.0003479</td>
<td>0.0000498</td>
<td>-6.993</td>
<td>0.0000</td>
</tr>
<tr>
<td>18.HiP</td>
<td>-0.0002219</td>
<td>0.0000704</td>
<td>-3.154</td>
<td>0.0036</td>
</tr>
<tr>
<td>7</td>
<td>-0.0002205</td>
<td>0.0000565</td>
<td>-3.901</td>
<td>0.0005</td>
</tr>
<tr>
<td>1</td>
<td>-0.0001758</td>
<td>0.0000614</td>
<td>-2.862</td>
<td>0.0075</td>
</tr>
<tr>
<td>16</td>
<td>-0.0001622</td>
<td>0.0000704</td>
<td>-2.305</td>
<td>0.0280</td>
</tr>
<tr>
<td>11.L</td>
<td>-0.0001619</td>
<td>0.0000704</td>
<td>-2.300</td>
<td>0.0283</td>
</tr>
<tr>
<td>18.HiN</td>
<td>-0.0001304</td>
<td>0.0000704</td>
<td>-1.853</td>
<td>0.0735</td>
</tr>
<tr>
<td>18.LoN</td>
<td>-0.0001198</td>
<td>0.0000704</td>
<td>-1.702</td>
<td>0.0987</td>
</tr>
<tr>
<td>4</td>
<td>-0.0001092</td>
<td>0.0000704</td>
<td>-1.553</td>
<td>0.1307</td>
</tr>
<tr>
<td>9.Ent</td>
<td>-0.0001078</td>
<td>0.0000704</td>
<td>-1.533</td>
<td>0.1355</td>
</tr>
<tr>
<td>6</td>
<td>-0.0000706</td>
<td>0.0000704</td>
<td>-1.003</td>
<td>0.3236</td>
</tr>
<tr>
<td>11.C</td>
<td>-0.0000698</td>
<td>0.0000704</td>
<td>-0.992</td>
<td>0.3287</td>
</tr>
<tr>
<td>3</td>
<td>-0.0000631</td>
<td>0.0000537</td>
<td>-1.175</td>
<td>0.2490</td>
</tr>
<tr>
<td>5</td>
<td>-0.0000468</td>
<td>0.0000614</td>
<td>-0.761</td>
<td>0.4522</td>
</tr>
<tr>
<td>10.K72</td>
<td>-0.0000421</td>
<td>0.0000704</td>
<td>-0.598</td>
<td>0.5542</td>
</tr>
<tr>
<td>18.LoP</td>
<td>-0.0000391</td>
<td>0.0000704</td>
<td>-0.556</td>
<td>0.5822</td>
</tr>
<tr>
<td>13</td>
<td>-0.0000280</td>
<td>0.0000494</td>
<td>-0.565</td>
<td>0.5758</td>
</tr>
<tr>
<td>15</td>
<td>-0.0000271</td>
<td>0.0000429</td>
<td>-0.633</td>
<td>0.5316</td>
</tr>
<tr>
<td>12.rem</td>
<td>-0.0000178</td>
<td>0.0002152</td>
<td>-0.083</td>
<td>0.9347</td>
</tr>
<tr>
<td>10.K8</td>
<td>-0.0000090</td>
<td>0.0000704</td>
<td>-0.127</td>
<td>0.8994</td>
</tr>
<tr>
<td>9.F</td>
<td>-0.0000085</td>
<td>0.0000704</td>
<td>-0.121</td>
<td>0.9047</td>
</tr>
<tr>
<td>17</td>
<td>0.0000255</td>
<td>0.0000566</td>
<td>0.450</td>
<td>0.6559</td>
</tr>
<tr>
<td>12.ret</td>
<td>0.0000408</td>
<td>0.0002152</td>
<td>0.190</td>
<td>0.8508</td>
</tr>
<tr>
<td>9.L</td>
<td>0.0000571</td>
<td>0.0000704</td>
<td>0.812</td>
<td>0.4230</td>
</tr>
<tr>
<td>8.F</td>
<td>aliased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.A</td>
<td>aliased</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. The yield of mixtures containing species A and B, where the proportion of each species in mixture changes from no individuals (0) up to x individuals and the total number of individuals remains constant (adapted from Harper, 1977). Depending on the nature of the interaction between species, there may be substitution (a-b), a reduction in yield (c), or an increase in yields (d-e).
Figure 2. The relative yield of aboveground biomass or volume (RY) of 1:1 mixtures of *Eucalyptus* and N$_2$-fixing species in 13 different mixed-species stands and 6 pot trial mixed species treatments (all studies in Table 1, except 8-10, 12 & 14). RY above 0.5 indicates a higher productivity in mixture when compared to monocultures. Only one study (4, ●) has a lower yield in the mixed stand (below the dashed line), but the stimulus provided by a mixture is rarely shared equally between the species involved.
Figure 3. Height-age curves of *Eucalyptus sp.* growing with N$_2$-fixing species in 1:1 mixtures. Study numbers refer to the studies in Table 1 where the data were obtained. Improved growth of *Eucalyptus* was observed in trials in the left hand column, while no significant effect (Studies 3, 9 & 11), or a reduction in growth (Studies 5 & 11) was observed in trials in the right hand column.
Figure 4. Relative yields of *Eucalyptus globulus* and *Acacia mearnsii* growing in 1:1 mixtures at age 50 weeks in a pot trial (Study 18 in Table 1). RY > 0.5 indicates that plants were larger in mixture than in monoculture. Modified from Forrester et al. (2006).
Figure 5. Yield data from studies reported in Table 1. Replications within a study have been averaged for clarity in this figure. Symbols correspond to those in Figure 6 (Group 1 shown as ▲, Group 2 as ●, and Group 3 as ○; Study 17 as *"). The solid line is a linear regression, for clarity shown only for Study 15. Yields from study 18 have been scaled (*0.01) for clarity.
Figure 6. Residuals from the linear regression, expressed as a multiplier (i.e., back-transformed) showing the quadratic trend (Group 1 shown as ▲ and dashed grey line, Group 2 as ● and dashed black line; Group 3 as ○ and dotted line. Each point represents an entry from Table 1; unlike Figure 6, no averages have been used.