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ABSTRACT 

 

For the efficient design of reinforced concrete beams and frames, moment redistribution is used to: 

reduce the absolute maximum magnitude of the moment in the critical region; equalise the critical 

moments at either side of interior columns and fully utilise the capacity of the non-critical regions of a 

member. Although important in design, moment redistribution has historically proved to be difficult to 

quantify due to the complexity of quantifying hinge rotations. In this paper a framework used to 

develop mechanics based equations to quantify the moment rotation characteristics of reinforced 

concrete hinges is presented. This framework directly applies partial interaction theory in the tension 

region to simulate the mechanisms associated with slip of the reinforcement relative to the surrounding 

concrete as cracks widen. While in the compression region, shear friction theory is used to describe the 

formation and failure of concrete softening wedges. Mechanics based solutions for moment 

redistribution at all load levels is presented and it is shown that at the ultimate limit state mechanics 

based closed form solutions simple enough for use in routine design can be developed. 
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INTRODUCTION  

 

Moment redistribution is vital to the design of reinforced concrete (RC) structures as it governs the 

strength of continuous members and the ability to absorb energy such as that from dynamic events. 

Moreover moment redistribution is used to improve the efficiency of design by allowing for a 

reduction in the absolute magnitude of moments in the critical regions; the equalisation of moments at 

either side of interior columns; and the full utilisation of the capacity of non-critical regions of a 

member (Paulay 1976). 

 

Despite the importance of moment redistribution predicting the moment redistribution capacity has 

historically proved difficult. While numerous empirically derived hinge lengths, that is the length over 

which the full interaction curvature at failure is integrated to give rotations, have been proposed, when 

applied to a global dataset correlation is poor (Panagiatakos and Fardis 2001). The authors (Visintin et 

al. 2012; Oehlers et al. 2014a; Oehlers et al. 2014b) have suggested that the difficulty in predicting the 

ductility of RC members lies in the method of analysis most often applied and suggested by codes, that 

is in the application of the full interaction moment curvature approach (M/χ). This is because at all 

load levels following the formation of an initial crack the moment M/χ approach does not simulate the 

localised partial interaction behaviours seen in practice. These partial interaction behaviours are: (1) 
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the slip of the reinforcement relative to the surrounding concrete in the tension region, which controls 

crack formation, crack widening and tension stiffening; and (2) the slip along concrete to concrete 

sliding planes in the compression region which are associated with the formation and failure of 

concrete softening wedges. 

 

In response to the limitations imposed by empiricisms, in this paper a segmental moment rotation 

approach developed by the authors (Visintin et al. 2012; Oehlers et al. 2014a; Oehlers et al. 2014b; 

Visintin and Oehlers 2014a) is presented. The segmental approach is based on the Euler-Bernoulli 

theorem of plane section but not on the corollary of a linear strain profile. The approach directly 

simulates the formation and widening of cracks as well as tension stiffening through the application of 

partial interaction theory and the formation and failure of concrete softening wedges through the 

application of shear friction theory in the form of a size dependent stress strain relationship. 

 

In this paper the partial interaction mechanisms which control the ductility of RC members are first 

described, a segmental approach which directly incorporated these mechanisms is then presented. 

Finally, mechanics solutions to define moment redistribution and which incorporate the segmental 

approach and therefore directly simulate the partial interaction mechanisms are given.  

 

PARTIAL INTERACTION MECHANISMS 

 

Tension Stiffening Mechanism 

 

Consider an RC prism such as that shown in Figure 1(a) which is extracted from the tension region of 

the beam in Figure 2. The concrete prism has a cross sectional area of Ac and modulus Ec and is 

reinforced with a total area of reinforcement Ar and modulus Er. The prism is uniformly stressed such 

that prior to cracking it has a total axial rigidity of ErAr+EcAc. After the formation of an initial crack 

the axial rigidity of the prism reduces but due to tension stiffening is greater than that of the 

reinforcement alone. This increase in stiffness above that of the bare bar can be directly simulated 

through mechanics by considering the load slip Prt/Δrt behavior of the prism, the full details of which 

can be found elsewhere (Haskett et al. 2008;Visintin et al. 2012), but a summary of which is presented 

here.  

 

After an initial crack has developed the total force in the prism in Figure 1(a) is resisted by the 

reinforcement force at the crack face, Prt, in Figure 1(b). The force Prt induces an interface slip δ along 

the length of the bar and is at its maximum Δrt at the crack face and reduces to zero at a distance Scr. 

The distribution of slip δ in Figure 1(d) is itself a function of the interface shear stress distribution in 

Figure 1(c) which can be defined from local bond stress slip (η/δ) material models. From the known 

distribution of shear stress and slip, the distribution of strain in the reinforcement εr and in the concrete 

εc can be determined. The slip strain d/dx shown in Figure 1(e), which is defined as the difference in 

strain between the reinforcement and the concrete can therefore be determined. Knowing the 

distribution of δ and dδ/dx the full interaction boundary condition can be identified as the location 

where both δ d/dx reduce to zero. Beyond the full interaction boundary condition the stress in the 

reinforcement and the concrete are constant and the stress in the concrete is at its maximum. Hence a 

subsequent crack can form anywhere in the full interaction region but the minimum primary crack 

spacing is Scr. 

 

When primary cracks have formed along the prism as in Figure 1(f) the loading on each prism is 

symmetric and hence so too is the distribution of slip and shear-stress as shown in Figures 1(g) and 

1(h). Through symmetry, the boundary condition that the slip at the midpoint between two cracks is 

zero can be applied to determine the relationship between Prt and Δrt. Hence, through a PI analysis of 

the prism in Figure 1(a), the crack spacing Scr can be determined and through the PI analysis in Figure 

1(f), relationship between Prt and Δrt, which allows for tension stiffening through bond slip is known. It 

should be noted that full details of a numerical solution procedure (Haskett et al. 2008;Visintin et al. 

2012) as well as closed form solutions (Zhang et al. 2014) which define both the crack spacing and the 

stiffness of the Prt/Δrt can be found elsewhere.    
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Figure 1. Partial interaction tension stiffening analysis 
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Figure 2. Segment of an RC beam 

 

Shear Friction Mechanism for Concrete Softening  

 

Let us now consider the partial interaction mechanism which can be used the formation and failure of 

the concrete softening wedge in Figure 2 (Oehlers et al. 2014a; Visintin et al. 2014c). The shear 

friction mechanism of concrete softening can be defined by considering a prism of total length 2Ldef = 

Scr which is subjected to a concentric load ζa in Figure 3(a) (Chen et al. 2014; Oehlers et al. 2014a).  
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Figure 3. Shear friction concrete softening mechanism 
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On gradual loading of the prism in Figure 3(a), the stress strain behaviour O-A in Figure 3(b) is 

governed by material contraction according to the material modulus Ec. Beyond a stress ζsoft localised 

partial interaction sliding along potential planes of weakness at angle α result in the deformation Δwdg 

in Figure 3(a). For stresses above ζsoft the total shortening of the prism is therefore comprised of a 

material contraction ζaScr/Ec and a localised deformation 2ΔScr where ΔScr is the longitudinal 

component of Dwdg. The total effective strain for a given stress greater than ζsoft is therefore ζa/Ec+ 

2ΔScr/Scr. Importantly, the shear friction component, 2ΔScr/Scr, is a pseudo strain and is size dependent. 

This is because for a given level of lateral confinement and axial stress, ΔScr remains constant 

regardless of size. It therefore follows that if the prism length Scr in Figure 3 is taken as the length of 

the segment Scr of  in Figure 2 concrete softening will be simulated through the application of a size 

dependent stress-strain relationship such as by Chen et al. (2014) which has been determined using the 

concepts of shear friction as described here. 

 

SEGMENTAL APPROACH 

 

Having now defined the partial interaction mechanisms required for analysis let us consider their 

incorporation into a flexural analysis technique developed by the authors (Visintin et al. 2012; Visintin 

and Oehlers 2014a). Consider the segment in Figure 2(a) which is subjected to a constant moment M 

which causes a rotation at the ends θ which is accommodated by a deformation from A-A to B-B. This 

deformation is accommodated by a combination of material strains within the segment as well as the 

localised partial interaction mechanisms outlined above. For analysis, due to symmetry about plane C-

C in Figure 2 only half the segment as shown in Figure 4(a) needs to be considered.   
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Figure 4. Segment for analysis 

 

In Figure 4(a) if a rotation θ is imposed resulting in a deformation from A-A to B-B, the resulting 

strain profile in Figure 4(b) can be quantified by dividing the deformation from A-A to B-B by the 

length over which it must be accommodated, that is Ldef = Scr/2. Prior to any strain localisations, that is, 

either concrete cracking or softening, the distribution of stress in Figure 4(c) and hence internal forces 

in Figure 3(d) can be determined from the distribution of strain in Figure 4(b) through the application 

of material constitutive relationships. The neutral axis depth can then be adjusted until for a given 

rotation, equilibrium is achieved and hence the corresponding moment is known. Importantly it can be 

noted that prior to cracking this analysis is identical to the moment curvature approach which is 

mechanically correct. 

 

Now consider the discontinuity in strain associated with concrete cracking and the slip of the 

reinforcement relative to the concrete which encases it. If the deformation from A-A to B-B in Figure 

4(a) results in a slip at the crack face Δrt it is required that the corresponding force Prt be known; this 

can be found using established partial interaction theory as described above. The analysis is therefore 

no longer a function of the linear strain profile in Figure 4(b), but rather a function of the linear 

displacement profile in Figure 4(a). That is the force in the reinforcement is directly determined from 

the displacement profile. Similarly when the rotation is increased such that concrete softening, which 

is characterised by the formation of a softening wedge occurs the application of shear friction theory 

through the use of a size dependent stress strain relationship is used to simulate concrete softening.  
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The above analysis can be used to derive a relationship between segment rotation and moment, 

importantly, the rotation q can be divided by the half length of the segment Ldef =Scr/2 in Figure 4(a) to 

obtain an equivalent curvature, from which an equivalent cracked flexural rigidity can be obtained. 

Significantly, the equivalent curvature and flexural rigidity allow for tension stiffening and concrete 

softening through the use of mechanics rather than relying on empirical definitions. 

 

Complete details of the segmental approach are presented in (Visintin et al 2012), closed form 

solutions to define the M/θ relationship at all load levels can be found in (Visintin and Oehlers 2014a) 

and effective flexural rigidities derived from the segmental approach for encastre beams in (Visintin 

and Oehlers 2014b).  

 

MOMENT REDISTRIBUTION  

 

According to Haskett et al. (2010) and Visintin et al. (2014c) let us define the moment redistribution 

factor KMR for an encastrè beam as 
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Where θ is the rotation of the hinge region at moment M and EI is the effective flexural rigidity of the 

span L. 

 

From the segmental approach, closed form solutions for the M/θ characteristics of the hinge in Figure 

4 are known (Visintin and Oehlers 2014a) at all load levels, as too are the effective flexural rigidities 

EI of an encastrè beam (Visintin and Oehlers 2014b). While the M/θ relationship derived from the 

closed form solutions can be applied to quantify moment redistribution at all load levels, for design it 

is required that the maximum possible amount of moment redistribution be determined.  

 

According to (Visintin and Oehlers 2014a) if the ultimate rotation θTu of a hinge can be defined as the 

rotation at which the maximum strain in the concrete is equal to the ultimate strain εu in Figure 3(b), 

and hence the ultimate hinge rotation θTu = εu/tanα, where α is the angle at which the softening wedge 

forms. 

 

Applying the segmental approach outlined above and taking the tensile reinforcement to be yielded 

and perfectly plastic the moment corresponding the ultimate hinge rotation is  
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Where Pyt is the yield force of the tensile reinforcement, ε0 is the strain corresponding to the peak 

stress fc, c is the cover to the centre of the compression reinforcement which has a axial rigidity of 

EArc and the neural axis depth dNA is defined as 
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Substituting Eq.2 and 3 into Eq.1 
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Equation 4 can be considered as a mechanics based replacement of current empirically derived 

moment redistribution factors in national standards that are frequently based on the neutral axis depth 

factor dNA/d. It can be seen that the currently used parameter has little relationship to the mechanics 

based parameter given by Eq. 1 and 4. This explains the huge discrepancies between current 

approaches as well as highlights the difficulty of trying to find an empirical solution to this complex 

problem. 

 

CONCLUSIONS 

 

Although important in design, moment redistribution has proved to be difficult to quantify due to the 

complexity of quantifying hinge rotations. In this paper it has been shown how, closed form, 

mechanics based equations to quantify the moment rotation characteristics of reinforced concrete 

hinges as well as to quantify the moment redistribution factor can be determined. These equations are 

an improvement on the empirical hinge formulations in that they simulate what is seen in practice 

through the simulation of partial interaction mechanisms. 
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