Taking the metabolic pulse of the world's coral reefs


Tyler Cyronak, Southern Cross UniversityFollow
Andreas J. Andersson, University of California San Diego
Chris Langdon, University of Miami
Rebecca Albright, , Carnegie Institution for Science, USA
Nicholas R. Bates, Bermuda Institute of Ocean Sciences
Ken Caldeira, Carnegie Institution for Science, USA
Renee Carlton, Atlantic Oceanographic and Meteorological Laboratory, USA
Jorge E. Corredor, University of Puerto Rico
Rob B. Dunbar, Stanford University, USA
Ian Enochs, Stanford University, USA
Jonathan Erez, The Hebrew University, Israel
Bradley D. Eyre, Southern Cross UniversityFollow
Jean-Pierre Gattuso, Laboratoire d’Oce´anographie de Villefranche, France
Dwight Gledhill, National Oceanic and Atmospheric Administration Ocean Acidification Program, USA
Hajime Kayanne, University of Tokyo
David I. Kline, University of California San Diego
David A. Koweek, Stanford University, USA
Coulson Lantz, Southern Cross University
Boaz Lazar, The Hebrew University, Israel
Derek Manzello, Atlantic Oceanographic and Meteorological Laboratory, USA
Ashly McMahon, Southern Cross UniversityFollow
Melissa Meléndez, University of New Hampshire, USA
Heather N. Page, University of California San Diego, USA
Isaac R. Santos, Southern Cross UniversityFollow
Kai G. Schulz, Southern Cross UniversityFollow
Emily Shaw, California State University, USA
Jacob Silverman, National Institute of Oceanography, Israel
Atsushi Suzuki, National Institute of Advanced Industrial Science and Technology, Japan
Lida Teneva, Stanford University, USA
Atsushi Watanabe, Tokyo Institute of Technology
Shoji Yamamoto, University of Tokyo

Document Type


Publication details

Cyronak, T, Andersson, AJ, Langdon, C, Albright, R, Bates, NR, Caldeira, K, Carlton, R, Corredor, JE, Dunbar, RB, Enochs, I, Erez, J, Eyre, BD, Gattuso, JP, Gledhill, D, Kayanne, H, Kline, DI, Koweek, DA, Lantz, C, Lazar, B, Manzello, D, McMahon, A, Meléndez, M, Page, HN, Santos, IR, Schulz, KG, Shaw, E, Silverman, J, Suzuki, A, Teneva, L, Watanabe, A & Yamomoto, S 2018, 'Taking the metabolic pulse of the world's coral reefs', PLoS One, vol. 13, no. 1.

Article available on Open Access

Peer Reviewed



Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.

Find in your library